Benes Switching Fabrics with O(N)-Complexity Internal Backpressure

Georgios Sapountzis and Manolis Katevenis

FORTH & Univ. of Crete, Greece

Scalable Non-Blocking Switching

- Crossbar:
 - + simple and regular, but
 - $O(N^2)$ cost.

- Benes fabric:
 - + $O(N \cdot \log N) \cos t$,
 - + non-blocking,

inverse multiplexing

- multi-path routing
- re-sequencing
- load balancing

Buffered Switching Fabrics with Internal Backpressure

- Performance of OQ at the cost of IQ,
- Requires per-flow backpressure.

This Work:

- Multi-path routing & re-sequencing + per-flow backpressure.
- Flow merging to reduce cost.

\downarrow

- Scalable switching fabric architecture:
 - N•log N cost
 - large buffers only on ingress side
- Performance simulation:
 - fully non-blocking
 - delay within 20-60 % of ideal output queueing
 - without internal speedup

Cell Distribution Methods

- Aggregate traffic distribution:
 - Randomized routing (no backpressure)
 - Adaptive routing (indiscriminate backpressure)
 - \Rightarrow load balancing on the long-term only

- Per-flow traffic distribution:
 - Per-flow round-robin (PerFlowRR)
 - Per-flow imbalance up to 1 cell (PerFlowIC)
 - \Rightarrow accurate load balancing, on a shorter-term basis

Too many Flows

Per-output Flow Merging

- N² per chip in the middle stage
- Retains the benefits of per-flow backpressure
- N flows per link, everywhere
- Re-sequencing needs to consider flows as they were before merging
- Freedom from deadlock

Evaluation by Simulation

- Simulation model for the Benes fabric:
 - all link rates = 1 (no speedup)
 - -64×64 fabric (or 256 × 256) made of 4 × 4 switches.
 - RTT = 1 cell time (one stage to the next).
 - buffer size = 1 to 3 cells per-flow.
 - report only queueing delay.
- To verify freedom from internal blocking:
 - random permutations.

Bursty/12 Arrivals - Uniform Destinations

Buffers per Chip:

- Adaptive64: 512 cells / chip
- Randomized: very large buffers (no backpressure) (16000 cells for 99 % load)
- *PerFlowRR*: 512 cells / chip

Delay:

Benes with per-flow backpressure comes within 20% to 60% of ideal output queueing.

Bursty/12 Arrivals – Hotspots/4

- ➤ 4 out of 64 destinations are hotspots.
- \checkmark For the Benes fabric, average delay remain virtually unaffected
 - \Rightarrow Very good flow isolation.

Fabric Size

- ➤ Traffic with bursty/12 arrivals and hotspot/4 destinations.
- ✓ For the Benes fabric, average delay remains virtually unaffected.

Summary:

Benes Fabric with Internal Backpressure

- Multi-path routing & re-sequencing + per-flow backpressure.
- Per-output flow merging for O(N) switch cost.
- \Rightarrow Scalable switching:
 - $O(N \cdot \log N)$
 - large buffers only on ingress line cards
 - freedom from deadlock
 - no speedup needed
 - fully non-blocking
 - performance very close to ideal OQ

Smooth Arrivals - Uniform Destinations

- \checkmark Randomized cell distribution requires buffer sizes from 5 to 450 cells.
- ✓ *PerFlowIC* yields 30% to 60% lower delay than *PerFlowRR*.

Alternative Cell Re-Sequencing Methods

- ➤ Traffic with bursty/12 arrivals and hotspot/4 destinations.
- ✓ Per-stage re-sequencing is strictly better than last-stage-only re-sequencing both in terms of implementation cost and in terms of performance.