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Abstract— Unbuffered crossbars or switching fabrics contain
no internal buffers, and function using only input (VOQ) and
possibly output queues. Schedulers for such switches are complex,
and introduce increased delay at medium loads, because they
have to admit at most one cell per input and per output, during
each time slot. Buffered crossbars, on the other hand, contain
sufficient internal buffering (N2 buffers) to allow independent
schedulers to concurrently forward packets to the same output
from any number of inputs. These architectures represent the
two extremes in a range of solutions, which we examine here;
although intermediate points in this range are of reduced practi-
cal interest for crossbars, they are nevertheless quite interesting
for switching fabrics, and they may be of interest for optical
switches. We find that tolerating two cells per-output per time-
slot, using small buffers inside the switch or fabric, suffices
for independent and efficient scheduling. First, we introduce
a novel “request-grant” credit protocol, enabling N inputs to
share a small switch buffer. Then, we apply this protocol to a
switch with N such buffers, one per output, and we consider
the resulting scheduling problem. Interestingly, this looks like
unbuffered crossbar schedulers, but it is much simpler because
it comprises independent, single-resource schedulers that can be
pipelined. We show that individual buffer sizes do not need
to grow, neither with switch size nor with propagation delay.
Through simulations, we study performance as a function of
the number of cells allowed per-output per-time-slot. For one
cell, the switch performs very close to the iSLIP unbuffered
crossbar with one iteration. For more cells, performance improves
quickly; for 12 cells, packet delay under (smooth) uniform load
is practically as low as ideal output queueing. Under unbalanced
load, throughput is superior to buffered crossbars, due to better
buffer sharing.

1 . INTRODUCTION

Networks need fast and low-cost packet switches to keep
pace with the increase in communication demand. Switches
employ ingress and egress linecards, which usually contain
sizable buffer memories, and a core, which is a crossbar
or a switching fabric. Packet switch architectures belong to
two principal categories, depending on their core: buffer-
less or buffered. Crossbars were bufferless, but are now
evolving to architectures with buffers per-crosspoint, owing
to advances in IC technology that allow increased on-chip
memory; analogous trends exist for fabrics made of multiple
smaller switching elements. This paper studies the spectrum of
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Fig. 1. Placement of buffers in a crossbar. Starting from the left, we have
a bufferless crossbar, then a buffered crossbar, containing N2 buffers, i.e.
N per output, and, last, on the right, a system with less than N buffers per
output –two cell buffers per output are shown in the figure, but, in general,
the number of cells that fit in the aggregate output buffer can be either a
constant independent of N , or a sub linear growing function of N . In this
paper we consider the latter type of switches (or fabrics), i.e. buffered, with
less than N buffers per output. In the figure of the bufferless crossbar, the
red cell, shown in dashed line, cannot proceed as its output is occupied by
an other cell; in buffered switches however, the cell can proceed, as it can be
stored inside an output buffer.

intermediate solutions between the two extremes of bufferless
and buffered crossbars. Our study provides indications that
most of the advantages of buffered architectures –simple and
efficient, distributed, pipelined scheduling– can be achieved
with considerably less total buffer space compared to what
buffered crossbars currently employ.

With unbuffered core, output conflicts must be avoided
before packets enter the core: in each time-slot1, only a single
cell in the crossbar can use a specific crossbar output, and only
one cell in the crossbar can use a specific crossbar input; in
graph theory, crossbar scheduling is equivalent to bipartite,
input to output, graph matching. This problem requires a
central scheduler to coordinate the set of input/output pairs
(flows, or connections) that will be in the crossbar in each
time-slot [1] [2] [3]; this is a complex task that can limit
the switch packet rate. Heuristic algorithms that have been
adopted today work well only when internal speedup is used
to compensate for their scheduling inefficiencies [4]. Because
these algorithms operate only on fixed-size units, additional
speedup is needed when external packets have variable size,
to compensate for segmentation padding.

Buffered architectures ease scheduling by allowing conflict-

1a time-slot is equal with a cell time, that is the time it takes to transmit a
cell at rate λ.
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Fig. 2. (a) Exact versus approximate matchings, produced by independent
input and output schedulers. In exact matches (left), an input may not be
able to serve any cell if the cells it holds are for outputs currently matched
with other inputs. In approximate matches (right), two or more inputs can
concurrently feed the same output, which, as we show in this paper, increases
flexibility and performance.

ing packets to enter the fabric. The buffered crossbar has
one buffer per crosspoint (combined input crosspoint queueing
- CICQ), and has received much research attention recently
because it features simple and efficient scheduling [5] [6] [7]
[8].

Its single-resource, per-input and per-output schedulers op-
erate independent of each other; loose, long-term coordination
comes from backpressure flow-control, which is used to keep
the size of the crosspoint queues small enough to fit on-
chip. Flow control impedes repeated conflicting decisions
by the schedulers, and enforces pipeline-like operation. An
additional advantage of independent scheduling is that it can
be performed directly on variable-size packets, eliminating the
segmentation overhead [9].

These benefits come at the expense of a more expensive
fabric. The internal memory of a buffered crossbar grows with
N2·RTT ·λ, where N is the switch valency, RTT is the round-
trip time between the ingress linecards and the crossbar, and
λ is the line-rate. This is a high cost for switches with large
numbers of ports, N ; even for modest N , the implementation
can be expensive when RTT · λ is large [10].

1.1 Contributions

Unbuffered fabrics, on one hand, and crossbars with one
buffer per crosspoint, on the other hand, are the two extremes
in a range of architectures that contain some (small) amount
of buffering inside a crossbar or a switching fabric –see
figure 1 for alternative buffer placements. In this paper, we
examine these intermediate design points: what is the least
amount of buffer space that allows efficient, independent,
and pipelined scheduling? We find that buffer space of 2
cells per output suffices for independent pipelined scheduling,
that yields decent performance; with a buffer space of 12
cells per output, performance approaches the ideal, almost
independently of switch size N ; these numbers are to be
compared to buffer space of N ·RTT ·λ per output in buffered
crossbars.

Besides their theoretical importance, these results are of in-
terest primarily for fabrics made of multiple smaller switching
elements. For a single N×N switch implemented as crossbar,
placing fewer than N2 buffers “near” its outputs is awkward,
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Fig. 3. A N × N three-stage non-blocking fabric, comprised of M × M

switching elements with small output buffers. Even if each switching element
is a buffered crossbar, it will contain (M ) less memories per-output than (N )
the number of ingress linecards, hence, it is imperative to find methods that
will enable the sharing of these queues among the N ingress linecards. This
paper studies the above problem in the simpler framework of a single stage
switch.

because we would have to increase the output throughput of
the crossbar, which often costs more than the reduction in
memory bits –see figure 1. However, any interesting N × N

switching fabric contains less than O(N 2) switching elements,
and it is desirable to also limit its total buffer space quite
below that value –see figure 3. The message of this paper is
positive: There exist scalable scheduling methods to control
the number of conflicting cells entering a fabric. Once that
number is properly controlled, limited buffer space inside
the fabric suffices for high performance. Our model is crude
because it assumes that all buffers are at the outputs; however,
it constitutes a useful first approximation towards a full study
of the fabric itself. We are undertaking such a full study in a
subsequent, current work [11].

To achieve the above small buffer spaces, we had to go
over a sequence of steps which we present in this paper. First,
we replace traditional credit-based with request-grant credit
backpressure (section 2). This increases latency by 1 RTT ,
but allows buffer space reduction by a factor of N , in prin-
ciple. Section 3.1 presents the basic switch architecture, with
independent per-output and per-input schedulers operating in
a pipelined fashion, similar to buffered crossbar scheduling.
Pipelined unbuffered crossbar schedulers [12] [13] typically
employ multiple crossbar schedulers, each one comprised of
non-independent schedulers, which is only a halfway solution.

Next, we propose a credit prediction scheme, which further
reduces buffer size, making it independent of propagation
delay, by exploiting the lack of backpressure at the egress
ports (section 3.2). The resulting system allows independent,
pipelined scheduling with output buffers as small as a single
cell (which allows up to two conflicting cells per output).
This part of our results can be of interest for optical switches:
scheduling can be simplified significantly if the optical switch
contains a small (e.g. one-cell), fixed-delay, fiber delay line
(FDL) at each output; a cell will need to be stored on an
output FDL for one or a few cell times.

Section 3.3 outlines the similarities of our system, when
using round-robin schedulers, to iSLIP; we discuss how
“desynchronization” can be achieved, and we discuss how
the system provides 100% throughput under uniform traffic.
Section 4 discusses grant-rate control, a method preventing
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credit accumulations at (temporarily) congested inputs. The
last part of the paper (section 5) presents our simulation
results. Performance improves significantly when buffer space
per output increases from 1 to 4 cells, and less so up to
12 cells. We also study how performance depends on credit
generation rate, scheduling delay, and switch size, and we
demonstrate RTT-independence under the credit prediction
scheme.

1.2 Previous Work

In 1992, Li [14] considered a switch with FIFO inputs
queues (not VOQs) and infinite output queues accepting a
limited number of concurrent arrivals. Our study differs be-
cause we consider buffer space rather than buffer throughput
limitation; also, we assume VOQs, and we study scheduler
implementation. In an analogous way, the IBM SP2 Vulcan
switch [15] used requests and grants to control the use of
the limited throughput of its shared-memory buffer; again, we
differ because we control buffer space rather than throughput.
Recent PRIZMA work at IBM Zurich [16] considered a
switch with VOQs and a limited shared-memory. However,
the scheduling and the flow control (On/Off) style used end
up requiring O(N2) buffer space in the shared memory. By
contrast, our scheme only uses O(N ) buffer space.

Request-grant protocols like the one we use (section 2)
are used to communicate with the schedulers of all bufferless
crossbars. However, request-grant protocols have rarely been
used for flow control, in ensuring that buffers do not over-
flow. Abrizio (later PMC-Sierra) [17] used the LCS request-
grant protocol to control the utilization of a buffer fed by a
single input in a bufferless crossbar system. Instead, we use
our request-grant protocol for queues shared among multiple
inputs. Finally, flit-reservation flow control [18] is reminiscent
of our credit prediction scheme (section 3.2). Flit-reservation
applies to general interconnection networks and results in
efficient buffer usage, but buffer space is still dependent on
round-trip time. By contrast, our credit prediction makes buffer
space independent of round-trip time, but only applies to cases
where there is no backpressure from the egress port.

2 . REQUEST-GRANT BACKPRESSURE

2.1 Motivation

Buffered switching fabrics, i.e. networks comprising
buffered switching elements (or switches), are advantageous
as they tolerate approximate matchings –matchings that may
include link conflicts. Such matchings can be implemented
using independent, pipelined single-resource schedulers, one
at each contention point of the fabric. It is common practice
today to maintain large off-chip (expensive) packet buffers at
the ingress stage, and small on-chip buffers inside the fabric.
In this case, lossless backpressure needs to be exerted from the
fabric queues on the upstream inputs, so as to prevent queue
overflow.

An open issue in switching fabric design is the organization,
the flow control, and the scheduling of these queues. It
is advantageous to place the queues at the outputs of the
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Fig. 4. (a) traditional credit-based flow control needs N window buffers;
(b) request-grant credit-based flow control using a single window buffer.

switches, in order to allow the scheduling of these queues
by independent, per-output schedulers. (In a large switching
fabric, it is sometimes desired to have additional queues that
will host flows destined to different fabric output-ports.) At the
same time, it is also advantageous to associate each queue in a
switch with an upstream (input) switch, in order to eliminate
queue speedup. Credit-based flow control, reserving private
credits at each switch for the set of queues fed by its output
lines, works with such per input queues. In the end however,
the combined effect is that the number of queues needed grows
too fast, as we need N queues per output port.

2.2 Protocol

In this section we present a novel variant of credit-based
flow control, which enables buffer space sharing among mul-
tiple upstream inputs. This offers the possibility of reducing
buffer cost in large switching fabrics.

Consider N ingress linecards feeding one egress port of rate
λ, as in figure 4. With traditional credit-based backpressure,
figure 4.a), each input is allocated private credits correspond-
ing to a dedicated RTT · λ window inside the fabric. This is
necessary for individual inputs to be allowed to abruptly step
up their transmission rate without needing prior “consultation”
with the switch so as to learn about the other inputs’ current
rate.

However, since the aggregate rate of all inputs cannot
exceed λ, a single RTT · λ window suffices, in principle,
for the entire aggregate traffic. The problem with such a small
buffer window is that it is not known a priori how to divide
the credits for it among the N inputs.

This problem can be solved by making the ingress linecards
share access to a common credit counter for the buffer space
that they intend to share. Figure 4.b shows how to do this.
The shared credit counter is placed in the switch. Inputs
must secure credits before transmitting data. To resolve credit
contention when multiple inputs concurrently need credits,
inputs first request credits from a credit scheduler authorized
to allocate them. Requests wait inside request queues for their
turn to be served. The scheduler decrements the credit counter
when it serves a request, and returns a grant to the input
being serviced. (While its credit-counter equals zero, the credit
scheduler cannot serve input requests.) The recipient of the
grant can now safely forward the corresponding data. The

3



shared credit-counter is incremented when data depart from
the shared buffer space.

The round-trip time (RTT) in this protocol equals the delay
from a cell departure that increases the shared credit-counter,
till a cell which reserves the newly released credit reaches
the output queue and is ready for transmission. The request
corresponding to the latter cell can be in advance (of the
credit release) inside the request queues, hence the round-trip
time (and the associated queue space) is comparable to that of
credit-based backpressure. With respect to figure 4.b, the RTT
comprises the delays spent on (operations) arrows 4, 2, and 3.

As shown in figure 4.b, with fixed-size cells, the request
queues can be implemented using per-connection counters.

Observe that it is straightforward to prevent overflow of the
request queues, if each input interprets grants as “credits” to
send new requests. VOQs with more than u pending requests2

are not allowed to sent more requests to their credit scheduler,
until they first receive a grant/credit back. Now, the size of
a connection request queue (counter) will never exceed u. To
prevent underflow of the request queues, which in turn can
result in underflow at the packet queue, u has to be set so
that each VOQ is allowed to send a round-trip time worth
of requests before being notified that its “first” (i.e. earlier in
time) pending request has been accepted3.

The advantage of the request-grant backpressure scheme is
that one RTT · λ window suffices to support full line-rate to
any input that requests for it, whereas traditional backpressure
needs N such windows. One drawback of the new method
is that credits must be requested through a separate initial
transaction, thus increasing packet latency under low traffic
by one RTT (similar, though not exactly equal to the above
RTT); also, requests consume some extra bandwidth. These
issues are not discussed further in this paper.

3 . A SWITCH WITH SMALL OUTPUT QUEUES

In this section we present a switch with one small queue at
each output, managed using request-grant backpressure.

3.1 Switch Description

Figure 5 presents our scheme. The input linecards contain
large virtual output queues, and express their demand for an
output by issuing a request to the associated credit scheduler.
Outstanding requests are kept in request counters, organized
per-input (and per-output), which will be served in subsequent
cell times. Unmatched inputs, that wait for grant (credit),
are allowed to send new requests to the same or to other
outputs; thus, multiple grants from different outputs can be
generated concurrently for the same input. A grant scheduler
associated with the input selects one among them, sends it
to the input linecard, and keeps the remaining grants inside

2a VOQ request is pending from the time it is issued from its input linecard
(towards its output credit scheduler), until the corresponding grant is received
back to the input linecard.

3the round-trip time corresponding to the flow-control of the request
queues can differ from the round-trip time corresponding to the request-grant
backpressure for the packet queue, if for example, the credit-scheduler and
the shared packet queue are located in separate chips.
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Fig. 5. A switch with small output queues managed using request-grant
backpressure. Request and grant queues are implemented as counters.

appropriate grant queues, organized per-output, which will be
served in subsequent cell times. The input linecard responds
to an arriving grant by forwarding the corresponding cell;
when the cell starts departing from the output buffer, the credit
assigned to it is returned to the credit scheduler.

This organization of credit (output) and grant (input)
schedulers resembles schedulers for unbuffered crossbars, like
iSLIP, but, by using small output buffers, the present scheme
is simpler. There is no need for schedulers to coordinate their
decisions on a cell time basis, as they do in iSLIP; instead,
they can operate independently, in a two-stage pipeline, with
a complete cell time long pipeline “clock-cycle”: in the first
pipeline stage, each credit scheduler independently produces a
grant and sends it to the corresponding grant (pipeline) queue;
in parallel with the first stage operations, each grant scheduler
(second pipeline stage) independently selects one among the
grants accumulated up to now inside its grant queues –not
considering the concurrent outcomes by the credit schedulers.
In this way, the matchings produced can be conflicting but
we do not care: if more than one input linecards receive a
grant for the same output at the same time, the output buffer
will absorb the resulting output conflict, which will occur after
the granted cells reach the fabric, after some fixed propagation
delay. This type of scheduling is as simple as buffered crossbar
scheduling.

Let B denote the buffer size –i.e. the number of credits per-
output–, and SD the pipeline scheduling latency –i.e. the sum
of credit and grant schedulers delays.

Additionally, denote by R the peak rate at which any partic-
ular credit scheduler hands credits out. In general, R may have
any value ≥1 credit/cell-time; in this paper however, unless
otherwise commented, we assume the minimum allowable rate
R, i.e. one (1) credit/cell-time4. On the input side, we assume
that each time a grant scheduler grants its corresponding input
linecard, a cell is injected inside the fabric: the rate of each
grant scheduler is one (1) grant/cell-time by default, for we
do not assume any speedup at the fabric ports.

4if R>1, the credit scheduler may produce multiple credit in a single time-
slot; however, its effective (long-term) rate will be dictated by the rate that
credits are replenished, i.e. 1 (cell)credit/cell-time. Our simulations show only
marginal benefits in increasing R beyond this value.
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We assume that each credit or grant scheduler implements
pointer-based round-robin scheduling. Although global co-
ordination is not imposed explicitly, and the independent
schedulers could synchronize in states of poor throughput,
for B=1 (allowing one conflicting cell per-time-slot) they will
tend to desynchronize as they do in the iSLIP architecture [3]
–see section 3.3. With increasing buffer size per output B,
performance improves fast.

With multicell output buffers, a credit scheduler may pro-
duce grants in consecutive time-slots, in addition to a first
pending grant, thus providing matching opportunities for other
inputs as well5. This means that two or more input (grant)
schedulers may select a grant/credit from the same output at
the same time, thus, multiple cells may reach an output buffer
in the same time.

Assuming that the latency of each individual scheduler
(credit or grant) is one cell time, the round-trip time will
be greater than two cell times, thus at least two-cell output
buffers are needed. Of course, the round-trip time additionally
includes the propagation delay. Next, we show how we can
eliminate the dependence on this parameter.

3.2 Credit Prediction: Independence from Propagation Delay

Let P be the (one way) propagation delay between a
linecard and the switch –see figure 5. We will show how
to eliminate P from the effective round-trip time used in
dimensioning the output queues. This is possible because
egress ports are not subject to external backpressure.

Credits are generated when cells depart through the egress
ports. Since there is no external backpressure to these ports,
if we know that an output queue will be non-empty at a given
time in the future, we can predict that a cell will depart and
a credit will be generated (per cell time) at that time in the
future. Such predicted “future credits” can be used to trigger
cell departures from the ingress linecards, provided we can
guarantee that the corresponding cells will not arrive at the
buffer before the above future time. In our case, consider a
grant g selected at time t by a grant scheduler; g will arrive
at its linecard at t + P , will trigger the corresponding cell
departure, and that cell will arrive into its output buffer at
t + 2P . At time t we know g, hence we also know the
output that it refers to; thus, we can safely conclude that the
corresponding output buffer will be non-empty at time t+2P ,
and consequently it will generate a credit at t + 2P + 1. At
t+1 we can use this predicted credit to generate a grant, given
that the latency from grant generation to cell arrival can never
be less than 2P .

Using credit prediction, the switch operates efficiently with
two-cell output queues supporting enqueues at rate 2λ, inde-
pendent of P : when the demand for an output is high, cells
and grants for this output, of aggregate size 2 · P · λ, will be

5a grant/credit is said pending from the time it is generated by its output
credit scheduler, until it is returned back to the credit scheduler, i.e. after the
corresponding cell departs its output queue; when credit prediction is used,
credits return faster –see sec. 3.2.

virtually “stored” on the lines between the linecards and the
switch.

For the scheme to work correctly, we must take care of one
additional issue. Say that at time-slot t, k (> 1) grants for
output o are selected by k grant schedulers in parallel. In this
case, under credit prediction, k credits must be returned to the
corresponding credit scheduler. Observe that the credit count
should not be incremented by k at once in time-slot t, since
the credit scheduler for output o may then drive multiple (>1)
cell arrivals in time t + 1 + 2 · P –assuming R>1–, whereas
only one new cell position in the buffer will be available on
that time. Thus, we must throttle credit increments so that
these occur at a peak rate of one (credit) increment per-time-
slot per-output. This can be realized using an intermediate
predict credit counter, in addition to the actual credit counter
used so far. The predict credit counter, which is initialized at
zero (0), is incremented every time a grant for that output is
sent to an input linecard, and is decremented by one in every
time-slot when it is greater than zero; once decremented, the
corresponding (actual) credit counter is incremented by one 6.

3.3 Operation and Throughput Of Independent & Asyn-
chronous Schedulers

When B=1 cell, our credit scheduling disallows output
conflicts, by having at most one credit pending at a time, per
output. Thus, no output buffers are actually needed in this case,
and the crossbar behaves like bufferless. However, a complete
pipeline operation, comprising both (output) credit and (input)
grant scheduling, has to complete within time-slot boundaries
–SD ≤ 1 cell time. (It is easy to see that if SD equals
two cell times in this bufferless crossbar, its peak throughput
will be equal to 50%.) In each such time-slot operation, our
credit and grant schedulers “find” a different bipartite graph
matching. This process for scheduling looks very much alike
crossbar schedulers that use independent input and output link
schedulers, and multiple iterations of handshaking between
them to improve match size. These schedulers have been
studied extensively for more than a decade now [1] [2] [3]
[19].

Acceptable performance, using a single iteration, is only
achieved when crossbar schedulers fix in some effective
matching sequence. For example, desynchronization, as first
presented in the iSLIP switch, makes each output scheduler
always granting a different input scheduler in each time-slot,
and different than all other output schedulers, even though all
schedulers work independently; however, desynchronization is
accomplished only under a limited set of VOQ loads, and,
anyhow, it introduces large delays until schedulers find their
proper arrangement.

Normally, these algorithms need many “iterations” of hand-
shaking between the independent output and input schedulers,
in order to achieve good matches, as, in each time-slot that
two or more output (credit) scheduler happen to grant the

6when R=1 credit/cell-time, which is the default value in this paper, the
need for the predict credit counter is removed: each credit scheduler will
always allocate only one new credit per-cell-time.
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same input, throughput is directly wasted. In each such time-
slot, there must be some unmatched input, thus an input with
no grant/credit to use, thus an underutilized input line, and
therefore an underutilized output line –since the number of
inputs is equal to the number of outputs.

For instance, in PIM-like crossbar schedulers, inputs re-
quest all outputs for which they have cells. Scheduling starts
with each output (independent) scheduler granting some input
request, and an input-output match is added when some
input (indepedent) scheduler accepts an output grant. In these
schedulers, all the grants that conflict on some input, except the
one that is “accepted”, are normally “dropped”. This happens
as it is either inefficient, or not safe, to store these previous
“not-accepted” decisions. Consider that one such grant, name
it g, produced by output o, was stored, instead of being
dropped. If output o is not allowed to produce a new grant
(after g) before the g gets accepted by its input scheduler,
then, that output will stay underutilized for all that time; on the
other hand, if output o is allowed to produce a new grant even
before g is accepted, then, we run the danger of both grants
being accepted concurrently by their input schedulers, thus
violating the (bufferless) crossbar constraints. For this reason,
not-accepted grants are normally dropped and many iterations
or speed-up are used to increase match size, essentially to
match those schedulers whose previous decisions have been
dropped7. By contrast, our architecture, for any B, never drops
a grant or request, thus, every decision of a link scheduler will
become “operational” immediately or in the short run8. In this
way, fewer decisions are needed in order to occupy the output
lines with same data.

In our system, with large buffers (B ≥2 cell time), each
single resource scheduler operates independently within time-
slot boundaries, producing a new valid “outcome” in each
time-slot (SD=2 cell times), without needing to communicate
anything with other schedulers in the middle of this cell time
operation. Scheduling time-slots, in different schedulers, are
essentially asynchronous with each other. Each scheduler picks
the state communicated by other schedulers before starting a
new operation, and communicates its new “outcome”, when
that new operation finishes. The scheduler (or schedulers)
being notified of this new “outcome” may be in the middle of
a scheduling operation, as schedulers operate asynchronous of
each other; thus, it will buffer its new “input”, and will use
it (i.e. produce a new outcome taking that new input under
account), in its next scheduling slot, after finishing the current
one.

7pipelined schedulers for bufferless crossbars [12] [13] reduce timing
constraints, but can get quite cumbersome to build, as they normally need
to incorporate multiple scheduling iterations for each matching produced.
Instead, our pipelining is as simple as it can get, and it does not use speedup.
The intrinsic difficulty with bufferless crossbar schedulers relative to our
scheduler for multi-cell output buffers should be tracked down at the problems
that the two schedulers try to solve: it is much easier to build an approximate
match than an exact match.

8There is no problem with that, since, each such grant has space reserved
to fit inside the output buffer whenever it gets accepted by its input grant
scheduler.
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Fig. 6. (a) Desynchronization of output pointers yields 100% throughput
when B=1; (b) Buffering yields 100% throughput when B=N . The request
queues (not shown) are assumed to be continously non-empty. The figure
assumes that credit prediction is employed, so that a credit is replenished just
after a grant is selected by its grant scheduler.

Performance improves sharply with increasing B, as sched-
ulers do not have to halt after their first conflicting decision
–i.e. when the replenishment of a credit delays– , but, instead,
they can use their additional credits to continue serving inputs.

Schedules become feasible thanks to the flow control of
the output buffers: during any time interval T , the number of
cells injected for a given output, from any number of inputs,
will always be ≤ λ · T + B. Consider that, if buffers were
not associated with outputs, (a) their flow control would not
control the congestion of the output lines, and inadmissible
traffic could monopolize the input queues inside the crossbar;
and (b) exact crossbar matches would still be need.

Summing up, buffer space before the output ports of the
fabric acts as a conflict tolerance parameter that increases
flexibility, allowing us to build approximate crossbar matches,
using independent and pipelined single-resource schedulers
with multi-cell-time pipeline delay; the schedules produced
by these schedulers may include conflicts in the short term
but are feasible and efficient in the long run: in this paper,
we show that, without any speedup, this architecture performs
very close to ideal, with only 12 cells per output9.

3.3.1 Single-Cell Buffers: Deterministic Desynchronization
Based on [19], we prove in this section that, under uniform

cell arrivals, the throughput of the switch that we propose
in this paper, with SD=1 time-slot, B=1, and pointer-based
round-robin schedulers, can reach 100%. (This result applies
for any propagation delay P , if we employ credit prediction.)
A critical assumption is that all output credit schedulers use a
common ordering of inputs, when they “search” which input
is next to serve. To see why, first consider that when B equals
one (1), any particular credit scheduler may have only one
input granted at any given time –it can produce a new grant
only after it is notified that its “first” grant has been accepted10.
If this output grant is not selected by the grant scheduler, it
will reside in its grant queue, waiting to be served, which is

9we have made extensive tests for B equal to {1,2,5,7,8,12,16,32}.
10either when the grant is selected by its counterpart input scheduler (credit

prediction) or when the corresponding cell leaves the output buffer (no credit
prediction).
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Fig. 7. Desynchronization for intermediate B values; (a) for SD=1; and (b)
for SD=2. The request queues (not shown) are assumed to be continously
non-empty. The figure assumes that credit prediction is employed, so that a
credit is replenished just after a grant is selected by its grant scheduler.

equivalent to what happens in iSLIP –and, symmetrically in
DRRM: iSLIP, instead of storing not-accepted grants, cancels
them, but reproduces them in subsequent time-slots until these
get accepted.

More formally, assuming 100% uniform load, after a point
all request queues will be persistent. If gk,i denotes the number
of cells inside the grant queues of input i in cell time k, then,
it is easy to show that:

gk+1,i =



















0, gk,i ≤ 1, gk,i−1 = 0 (1)
gk,i − 1, gk,i > 1, gk,i−1 = 0 (2)
1, gk,i ≤ 1, gk,i−1 > 0 (3)
gk,i, gk,i > 1, gk,i−1 > 0 (4)

where i − 1 = (i + N − 1) mod N . Then, from [19], it
follows that at most after N − 1 time-slots, all inputs will
continously have a non-empty grant queue (gt,i > 0, ∀ t >

k+N−1, ∀ i ∈ [1, N ]); hence, the switch will reach 100%
throughput.

3.3.2 Multi-Cell Buffers: Statistical Desynchronization
For the more practical system, with two cell time pipeline
scheduling latency (SD=2), and two cell buffers per-output
(B=2), a possible proof for the 100% throughput capability
would not be trivial at all. The problem lies in that we cannot
easily identify the input that an output will grant after it
receives a credit back from a grant scheduler, since it may
have already granted several subsequent inputs utilizing the
second available credit.

However, our simulation results indicate that 100% through-
put is still achieved with B>1. Actually, the practical system
with SD=2 time-slots and B=2 cells, outperforms the one for
which we have proved the 100% capability (SD=1, B=1) –see
figure 13 in section 5.

As B grows further, delay and throughput improve. The
improvement is sharp as B increases from 1 to 4 cells, sligltly
smaller as B increases from 4 to 12 cells, and marginal
thereafter. With large output buffers, desynchronization of
output pointers is not that crucial. For comparison, figure 6
depicts the two extreme cases: (a) when B=1, full utilization

is achieved thanks to desynchronization; (b) when B=N ,
even if all output credit schedulers circularly visit inputs, in
full synchrony, full utilization can be achieved. As another
example of how buffers tolerate conflicting decisions, consider
a buffered crossbar switch with one cell buffer per-crosspoint
(hence N cell buffers per output), and round-robin input and
output schedulers. In this architecture, clashing input pointers
may produce output conflicts, however this does not seem as
a spot of significant bother: a tagged cell, conflicting with as
many as N −1 other cells, may have to wait N −1 time-slots
at its crosspoint; in the meanwhile that cell’s input can feed
other outputs, returning to the crosspoint of the tagged cell
just after that empties (and so on).

For intermediate B values, between 1 and N , the credit
schedulers must desynchronize at some extend to achieve full
throughput. Figure 7.a shows how with B=2 and N=3, the
credit schedulers desynchronize to the extend needed for full
utilization; and figure 7.b shows the same behavior, when the
pipelined scheduling delay (SD) equals two time-slots. (The
100% throughput capability under moderate buffer sizes is
further substantiated through simulations in section 5.)

It should be noted here that, what we call desynchronization
under moderate buffers (≥ 1 cell) is not a deterministic, but
rather a statistical argument. With large output buffers, thus
many credits available, each input is expected to have some
grant in its grant queues. Since there are N ·B total credits in
the system, and only N inputs, it can easily be the case that a
“busy” input, that did not receive a new grant in some time-
slot, will very much probably have some credit from previous
time-slots. To this end, we do not need to fix the output
pointers in some specific arrangement, as when B=1, or as in
iSLIP and DRRM. Instead, we simply must avoid persistent
degenerate credit distributions, where plenty of output credits
get reserved for only a few inputs.

4 . THROTTLING GRANTS TO A BOTTLENECK INPUT

According to our simulation results (section 5), our switch,
as described so far, performs very well under smooth
(Bernoulli) arrivals with buffers of 4 to 12 cells per-output,
independent of the propagation time, under both uniform
and non-uniform (unbalanced) traffic. This section discusses
system operation under bursty traffic (correlated cell arrivals).

If multiple credit schedulers allocate credits to a grant
scheduler for the same input, at about the same time, that
input will not be able to respond as fast to all of them, due to
its limited throughput –remember that each grant scheduler se-
lects one grant per time-slot. Such accumulations of credits in
front of grant schedulers correspond to underutilization of the
common pool of available credits, hence also underutilization
of the available buffer space. Accumulations of this kind may
occur even under smooth cell arrivals, but tend not to be too
severe, as (output) credit schedulers quickly alternate among
the inputs to which they grant, and, because the reserved
credits return fast enough to their output credit scheduler, as
the variance of the load experienced in different inputs (and
different outputs) stays small, due to the smoothness of traffic.
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Fig. 8. The VOQs shown are assumed to be persistent, while the rest of
VOQs are assumed to be empty. (a) shows the performance of our system
under this unbalanced transient with input 2 constituting a bottleneck, when
no grant throttling is employed, and (b) shows how we want grant throttling
to work.

Under bursty traffic, however, requests may have to wait
for quite a long time before being served, due to multiple
bursts, from different inputs, targeting the same output at about
the same time. An input with many such requests pending at
multiple outputs, is said congested, and may receive multiple
grants at the same time, which will accumulate inside its
grant queues, as described above. Our simulations showed
that, using 12 cell buffers per-output, average cell delay under
uniform bursty traffic may get 3 to 4 times higher compared
to ideal output queueing at high switch load (higher than
0.9); under the same traffic, buffered crossbars achieve ideal
performance.

4.1 Unbalanced Transients with Congested Inputs

Since each independent credit scheduler is informed about
the state of the VOQs targeting its associated output but has
no direct information whatsoever regarding other VOQs, the
overall credit allocation cannot be optimal in the short term.
For one, credit schedulers, being oblivious of immediate input
contention, allocate credits as if all inputs with non-empty
request queues are equally loaded. Under probabilistic traffic,
however, inputs are not always equally loaded. Even under oth-
erwise uniform traffic patterns, there can be “moments” when
some VOQs are more loaded than other, and, analogously,
there can be “moments” when some inputs are more loaded
than other inputs, thus constituting a bottleneck. We name
such dynamic states after unbalanced transients. As discussed
above, one may fairly guess that, even though such transients
can also appear under smooth arrivals, they will be more
notable when arrivals are bursty. The problem is that during
such unbalanced transients, credits may accumulate in front
of the grant scheduler sending grants back to the congested
input at rate 1 grant per time-slot. Obvioulsy, this is the rate
that the accumulated credits become available again, and this
constitutes a problem, because these credits “steer” the traffic
to as many as N outputs.

For instance, consider that the credit scheduler for a tagged
output, say output 1, steers credits evenly among two inputs
with non-zero request queues. If one of these inputs, say input
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Fig. 9. The VOQs shown are assumed to be persistent, while the rest
of VOQs are assumed to be empty. In the depicted traffic scenario, output
1 constitutes a bottleneck. Our system, shown in (a), directly achieves the
desired instantaneous rates, whereas, the buffered crossbar, shown in (b), may
delay the proper rates until the crosspoint queue of connection 3→2 fills up.

2, has many cells destined elsewhere, say for two additional
outputs, whereas the other input, say input 1, has cells only
for output 1 –an unbalanced VOQ demand with input 2
constituting a bottleneck–, credits will accumulate inside the
grant queues for input 1.

Figure 8.a depicts roughly the performance of our switch
during the aforementioned unbalanced transient with the con-
gested input. As the figure shows, in our system this transient
might bring idling output slots. The figure shows this inef-
ficiency as induced by credit reservation rates. In the very
end however, the main problem must be tracked down to the
following dynamic behavior11: whenever output 1 has some
credit available, with probability 1/2 it reserves it for input 2
and with same probability for input 1. However, as the credits
from input 2 return 3 times slower than from input 1, and
output 1 continues credit reservations using the same (1/2)
probabilities, in the end, it can be the case that input 1 usually
contains no credit at all for output 1; under this condition,
input 1 gets a credit chance of probability 1/2 once in every k

time-slots, where k ≈ 3. As we describe next, this inefficient
credit allocation cannot persist.

If demand persists in that same way, request queue 2→1,
i.e. that of the bottlenecked input, will empty even if VOQ
2→1 grows, as: initially, by assumption, request queue 2→1
drains at rate 1/2. Being loaded by two additional output credit
schedulers, grant scheduler for input i will serve grant queue
2→1 at rate 1/3, thus VOQ 2→1 will receive grants at rate
1/3. Due to request queue flow control, this rate, 1/3, upper
bounds the rate of new 2→1 requests (see section 2.2). Now,
since its drain rate (1/2) exceeds its load (1/3), request queue
2→1 will eventually empty, and will stay close to being empty
for as long as this VOQ state persists. It follows then that the
credit scheduler for output 1 will drop the credit rate for input
2 at 1/3, increasing at the same time the credit rate for input

11if the problem was that input 1 did not receive credits fast enough,
then increasing R would obviously improve performance. On the contrary,
simulations showed that increasing R offers marginal improvement.
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1 to 2/3, improving throughput12. However, the suboptimal
allocation may last for some time if the drain time of the
request queue is long, which can be the case when u is set
large in order to compensate for a large propagation delay P .
While the transient is “active”, input (virtual-output) queues
may marginally grow, and delay may increase13.

(It is interesting to see that when the bottleneck is an
output rather than an input, our system promptly delivers the
peak instant throughput, whereas a buffered crossbar may lag
behind the ideal until the backpressure is activated, that is until
the credits available at the ingress linecards for the congested
flows get exhausted14 –see figure 9.)

4.2 Threshold Grant Throttling

Using these observations, we came up with following simple
solution, which, instead of some sophisticated scheduling
discipline, uses a type of grant queue “backpressure” that aims
at responsively throttling the grants routed to the bottleneck
input. The key idea is to make credit schedulers stop serving
an input that does not return credits fast enough. In this
way, credit allocations, besides to output contetion, also take
input contention into immediate account; therefore, credit
distributions mirror flows fair shares better. (The way that we
want grant throttling to work is presented in figure 8.b.)

Grant throttling works as follows: a request from an input
is eligibile at its output (credit) scheduler, iff (i) output buffer
credits are available (as before), and additionally (ii) the
combined credit/grant queue size before that input’s grant
scheduler is less than a threshold, TH . This method can be
realized by having each input scheduler circulate an On/Off
signal, common (indiscriminate) for all credit schedulers, that
stays Off whenever the (grant) backlogs in its corresponding
grant queues sum up to TH (or higher).

Using simulations, we found that by adjusting TH at a value
below B, we can bring delay down to the levels of ideal OQ,
using only 12 cell buffers per-output, and plain round-robin
schedulers; these results apply for any switch size (N ) in the
range of 32 up to 256, and for a wide range of burstiness
factors.

5 . SIMULATION RESULTS

The performance of the switch with RR schedulers was eval-
uated under uniform and unbalanced traffic using simulations.
Simulations were run long enough to eliminate the effects of

12once again, we used a rather rough rate description. The actual phe-
nomenon can be more intricate.

13when the long-term traffic is uniform, the long-term throughput will not
be affected, as: if such VOQ increments are constantly added in a sequence
of such transients, all VOQs will end up being persistent, hence unbalanced
transients will disappear and VOQs will stop growing further.

14such unbalanced transients do not hurt the performance of buffered
crossbars because credits are private to each flow, thus, the conflicting cells
are stored at their crosspoint, and do not disturb the flows destined to other
outputs; on the contrary, these conflicting cells relief cells targeting other
outputs, by not contenting at the input any more. In our system, under
congested inputs, conflicting grants are similarly stored inside private (per
connection) grant queues; but, by delaying the reuse of the shared output
buffers, the grants for the congested input implicitly interfere with other inputs,
and might even slow down the flow of traffic through them.

2SLIP

4SLIP

bufxbar

B1

1SLIP

B2 B3

B12

B8

 0.1

 1

 10

 100

 1000

av
er

ag
e 

de
la

y 
(c

el
l−

tim
es

)

 0.01
 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

normalized input load

Fig. 10. Performance for varying buffer size, B; N=32, P =0, R=1
credit/time-slot, and SD=1 time-slot; Uniform Bernoulli cell arrivals; Only
the queueing delay is shown, excluding all fixed scheduling and propagation
delays.

initial transients –depending on switch size, input load, and
burstiness factor, a few thousands, up to tens of millions of
“start” cells where discarded, before gathering statistics–, and
the confidence intervals achieved were better than 10% around
the reported values with confidence 95%15. In the plots that
follow, we measure cells average delay in number of cell times
(cts). Note that the round-trip time equals 2 ·P +SD, and that
the minimum recorded cell delay in all systems equals zero
(we have removed the request-grant, cold-start delay overhead,
as well as scheduling and cell propagation delays).

Unless otherwise noted, our results do not use neither credit
prediction, nor grant throttling. Finally, to simplify the analysis
of our first results, in this paper we assume that each VOQ
may have a large number of pending requests –u is set equal
to 1000 in all experiments.

5.1 Uniform Traffic

5.1.1 Effect of Buffer Size, B: First, we use uniform
Bernoulli cell arrivals and we compare our switch for different
values of B –buffer space per-output in numbers of cells–, to
the iSLIP switch (iterations 1, 2 and 4), and to a buffered
crossbar with one cell buffer per crosspoint. Our cell delay
results for N=32 are presented in fig. 10. B1 behaves very
close to 1SLIP for the reasons described in section 3.3. With
increasing B, instances upon which a backlogged input does
not receive grant are expected to occur less frequently, there-
fore delay improves. B12 approaches the delay of buffered
crossbar (bufxbar) –see [3, fig. 3] shows that bufxbar

virtually matches OQ delay; under smooth arrivals, we found
no benefit in further increasing B.

5.1.2 Effect of Credit Rate, R: Figure 10 shows that at
medium loads, for any B value, the delay of our system
is slightly higher than bufxbar. These small discrepancies
can be ascribed to the following behavior: at medium loads,
occasional small bursts of cells for a switch output, from
different inputs, enter the fabric of our switch only at the
rate the credit scheduler admits cells inside, i.e. R= 1 cell

15in throughput experiments, confidence intervals where better than 1%
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(credit) per-cell-time in fig. 10; in the buffered crossbar, such
small bursts may enter the fabric immediately, bypassing
input contention. In our system, these “deferred” admissions
increase input contention and thereby cell delay.

To support this argument we increase the rate R, at which
each independent credit scheduler operates16. Figure 11 shows
our results. For R > 1, the cell delay at medium loads
approaches buffered crossbar, because of more cells skipping
input contention. Under high load, increasing R above 1
credit/time-slot, offers only very marginal improvements in
performance.

5.2 Under High Load Credits are Usually Pending

We have observed that, when the load is high, soon credit
schedulers have all their credits reserved. This happens due to
random grant conflicts, which, unavoidably, delay the return
of credits; therefore, as credit schedulers are greedy, soon their
whole available credit resides in grant queues, or in the output
buffers. This explains why increasing the rate R does not
improve the delay at high loads. Simply, such increments are
not functional, but only when the load is low, in which case,
as credits are usually available, a faster credit scheduler can
serve the “rare” sets of inputs that request its service at about
the same time faster.

5.2.1 Effect of Switch Size, N : In fig. 12 we evaluate the
effect of switch size, N . We find that, when B is small,
performance declines with increasing N . This behavior, also
present in the iSLIP algorithm using few iterations [3], should
be ascribed to harmful synchronizations among the credit
(output) schedulers becoming more severe as the number of
switch ports grows; but with increasing B, the dependence
on switch size vanishes because credit schedulers, even if
synchronized at some point, they can keep on producing
grants. Under Bernoulli arrivals, and for any switch size N

in {32, 64, 128, 256}, we found no benefit in increasing the

16grant schedulers still operate at rate λ, and cells enter the fabric from a
given input, and depart from a given output, at peak rate λ. Hence, increases
in R become functional only if B large enough, otherwise the effective credit
scheduler rate is limited by the rate that credits are released, i.e. 1 credit/cell-
time
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output queues beyond 12 cells. This suggests that buffer space
does not have to increase with switch valency.

5.2.2 Effect of Propagation and Scheduling Delays: Fig-
ure 13 examines how performance behaves with increased
scheduling latency and propagation delay. A first observation
is that, when credit prediction is employed, the queueing delay
does not depend on the propagation delay, P : with constant
B, the switch performs equally well for all P values that we
examine (0, 1, and 100 cts). On the other hand, a switch wait-
ing for cell departures to increment credits needs B to grow
with 2 · P + SD. This is manifested through the performance
curves corresponding to the configurations using SD2, P1 and
no credit prediction: the round-trip time is 2 ·P + SD= 4 cts,
hence, for B=2 the switch saturates at load 0.5, and performs
satisfactory for B=4. Another point is that the availability of
more credits per-output in SD2-B2 improves delay compared
to SD1-B1 –both using credit prediction–, even though output
and input schedulers communicate their decisions with a cell
time latency.

A final remark is that the conclusions inferred using previ-
ous experiments for systems with unit scheduling delay apply
equally well when SD=2. Figure 13 shows that, when P=100,
SD=2, and B=12, the queueing delay is very close to bufxbar

–compare to fig. 10. A 32 × 32 buffered crossbar switch,
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Fig. 14. Throughput under unbalanced traffic for varying buffer size, B;
N=32, P =0, R=1 credit/cell-time, and SD=1 cell-time; 100% input load.

having 100 cell-times propagation delay, requires 204 K of cell
buffers, whereas ours uses only 384. With increasing switch
valency, the cost reduction achieved increases even more.

5.3 Unbalanced Traffic

Next, we measure switch throughput under unbalanced
traffic. We borrow the unbalanced traffic model of [6], where
each input, i, sends most of its traffic to a private “favored”
output –in our experiments to output i. As in [6], w denotes
the unbalanced factor; when w=0 traffic is uniform, whereas
when w=1 the switch is loaded by a persistent permutation.
Our results, presented in fig. 14, show that the throughput
of B1 can be as small as 0.63 for intermediate w values,
which is also the throughput of the 32 × 32 1SLIP switch
[3, fig. 6]. With increasing B, throughput improves fast; for
B4, throughput is higher than 0.9, for B12 higher than 0.97,
and for B32 higher than 0.99. Our system achieves better
throughput than bufxbar with one cell per-crosspoint, due to
better buffer sharing.

The intuition that throughput increases with buffer size
can be better elucidated under this traffic model. Consider
a heavily loaded connection, fi→i. Under unbalanced traffic
with intermediate w values, the input neighbors of f are
occasionally active, thereby increasing during these periods the
input contention that f faces; similarly, the output neighbors
of f are occasionally active, increasing output contention.
Therefore, output i can be underutilized when f experiences
input contention and f ’s output neighbor connections are not
active. A large output buffer (B) absorbs traffic from f during
the output contention periods, and occupies with that traffic
the output when f experiences increased input contention. On
the other hand, the throughput of the buffered crossbar, with
one cell buffer per-crosspoint, is relative low due to memory
partitioning: even though the crossbar contains 32 cell buffers
per output, each heavily loaded connection can access only its
private, single-cell, crosspoint queue.

5.4 Bursty Traffic

Finally, we present results for bursty traffic. Bursty traffic
is based on a two-state (ON/OFF) Markov chain. ON periods
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Fig. 15. Performance under bursty traffic, for different grant queue thresholds,
TH; N=32, B=12, P =0, R=1 credit/cell-time, and SD=1 cell-time; average
burst length 12 cells.
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Fig. 16. Performance under bursty traffic, for different buffer sizes, B, when
no grant throttling is used; N=32, P =0, R=1 credit/cell-time, and SD=1
cell-time; average burst length 12 cells.

(consecutive, back-to-back cells arriving at an input for a given
output) hold for at least one (1) cell-time, whereas OFF periods
may last zero (0) cell-times, in order to achieve 100% loading
of the switch. The state probabilities are calibrated so as to
achieve the desirable load, giving exponentially distributed
burst length around an average which in this experiment equals
12 cells (close to the average packet size in the Internet).

As figure 15 shows, when no grant queue throttling is
employed, delay increases at high switch loads. Our results
indicated that increasing the buffer size per-output above 12
cells alleviates the delay degradation, though large buffers are
needed to approximate the ideal output queueing performance.
However, as the figure shows, by using a grant throttling
threshold below the buffer credit available per output (B), the
delay degradation essentially drops down to zero. We have
verified that this results apply for any switch size N up to
256.

Figure 16 demonstrates that, simply increasing the buffer
size per output, without applying any grant throttling, will
not improve performance; as the figure shows, at high very
loads, delay increases above the ideal output queueing even
for B=64. Instead, with grant throttling, a buffer size (B) of
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12 cells suffices to bring the delay down at the levels of pure
output queueing –see fig. 15.

6 . CONCLUSIONS

We presented a method to reduce the amount of internal
buffer space in a switching fabric by a factor of the order of N ;
we also showed how the propagation delay dependence can be
removed when sizing fabric queues. We applied our methods
in the design of a switch with small output queues, allowing a
limited number of conflicts per output (B), which features
simplified scheduling. We also discussed the asynchronous
operation of this switch, its throughput, and the harmful
accumulations of credits during unbalanced transients, as well
as a method to prevent them. For this switch we showed
how performance changes with varying B: performance is
close to that of unbuffered crossbars for B=1, and increases
with B, approaching that of buffered crossbars for B=12. A
value of B ≥ 2 is sufficient for independent and inherently
pipelined scheduling. Our results indicate that B does not have
to increase neither with switch size nor with propagation delay;
hence, techniques for high-bandwidth buffers [20] [16] can be
used in our switch in a scalable way.
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