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Abstract— Unbuffered crossbars or switching fabrics contain
no internal buffers, and function using only input (VOQ) and
possibly output queues. Schedulers for such switches are complex,
and introduce increased delay at medium loads, because they
have to admit at most one cell per input and per output, during
each time slot. Buffered crossbars, on the other hand, contain
sufficient internal buffering (N2 buffers) to allow independent
schedulers to concurrently forward packets to the same output
from any number of inputs. These architectures represent the
two extremes in a range of solutions, which we examine here;
although intermediate points in this range are of reduced practi-
cal interest for crossbars, they are nevertheless quite interesting
for switching fabrics, and they may be of interest for optical
switches. We find that tolerating two cells per-output per time-
slot, using small buffers inside the switch or fabric, sufficies
for independent and efficient scheduling. First, we introduce
a novel “request-grant” credit protocol, enabling N inputs to
share a small switch buffer. Then, we apply this protocol to a
switch with N such buffers, one per output, and we consider
the resulting scheduling problem. Interestingly, this looks like
unbuffered crossbar schedulers, but it is much simpler because
it comprises independent schedulers that can be pipelined. We
show that individual buffer sizes do not need to grow, neither with
switch size nor with propagation delay. Through simulations, we
study performance as a function of the number of cells allowed
per-output per-time-slot. For one cell, the switch performs very
close to the iSLIP unbuffered crossbar with one iteration. For
more cells, performance improves quickly; for 12 cells, packet
delay under (smooth) uniform load is practically as low as ideal
output queueing. Under unbalanced load, throughput is superior
to buffered crossbars, due to better buffer sharing.

1 . INTRODUCTION

Packet networks require low-cost and fast packet switches to
keep pace with the increase in communication demand. Packet
switch architectures fall in one of the following two principal
categories: (a) architectures with unbuffered fabrics, and (b)
architectures with buffered fabrics. Most commercial switches
of today belong to the former category, but the trend is towards
buffered fabrics that exploit advances in IC technology with
increased on-chip memory. This paper presents a combining
system, which inherits benefits from both categories. The
resulting architecture uses considerably fewer packet buffers
than other buffered architectures that are currently examined,
maintains simplified (independent and inherently pipelined)
scheduling, and provides performance which is strictly better
than that of practical unbuffered architectures.

‡ The authors are also with the Dept. of Computer Science, University of
Crete, Heraklion, Crete, Greece.

With unbuffered fabrics, output conflicts must be avoided
at the inputs, before packets are switched. Avoidance at the
inputs requires a central crossbar scheduler to coordinate the
set of input/output pairs (connections) that will be served
at each time-slot [1]; this is a complex task that can limit
the switch packet rate. Heuristic algorithms that have been
adopted today work well only when internal speedup is used
to compensate for their scheduling inefficiencies [2]. Because
these algorithms operate only on fixed-size units, additional
internal speedup is needed when the external network operates
on variable-size packets. In effect, the complexity of these
algorithms, which under the combined speedup need to run
much faster than the line-rate, constitutes a crucial bottleneck
of unbuffered architectures in scaling to large port-counts, and
in supporting very fast links, as OC768.

Buffered architectures ease scheduling by allowing conflict-
ing packets to enter the fabric. Recently, the buffered crossbar,
or combined input crosspoint queueing (CICQ) architecture,
receives research attention because it features simple and
efficient scheduling [3][4][5][7], and because the speed of each
crosspoint queue does not increase with switch size.

Buffered crossbars enable N input and N output schedulers
to work independent of each other, in a pipeline arrangement.
All inputs may concurrently send packets for the same switch
output, and these packets will be held inside the crosspoint
queues until they are served by the corresponding output link
arbiter. Backpressure flow-control is used to keep the size of
the crosspoint queues small, so that they can be implemented
inside inexpensive on-chip SRAMs; effectively, backpressure
impedes the independent input schedulers from repeatedly
making conflicting decisions [5]. It is interesting that simple
(and independent) round-robin (RR) schedulers in buffered
crossbars yield considerably better delay-throughput perfor-
mance compared to practical unbuffered crossbar schedulers.
An additional advantage of independent scheduling is that it
can be performed directly on variable-size packets, eliminating
the segmentation overhead as demonstrated in [6].

These benefits come at the expense of a more expensive
fabric. The internal memory of a buffered crossbar grows with
N2 ·RTT ·λ, where N is the switch size, RTT the round-trip
time between the input line-cards and the crossbar, and λ the
line-rate. This is a high cost for switches with large numbers
of ports; even for modest switch size, the implementation can
be expensive when the RTT · λ product is large [8].
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1.1 Contributions

Unbuffered fabrics, on one hand, and crossbars with one
buffer per input-output pair, on the other hand, are the two
extremes in a range of architectures that contain some small
amount of buffering inside a crossbar or a switching fabric.
In this paper, we examine these intermediate design points:
what is the minimum amount of buffer space that will enable
efficient, independent, and pipelined scheduling? Our main
finding is that allowing up to two cells for the same output to
concurrently enter the fabric suffices. To make this feasible,
we had to go over a sequence of steps which we present
in this paper. First, we replace blind-mode transfers (sending
without prior notice) with requested admissions (Section 2).
This enables the construction of a switch with a RTT ·λ queue
at each output maintaining simplified scheduling (Section 3.1).
However, in practical situations (RTT ·λ > one cell), multicell
output buffers supporting concurrent cell arrivals are needed.
Next, we remove the dependence of queue size on propagation
delay (Section 3.2), and we present a packet switch with one-
cell output buffers, allowing up to two conflicting cells per
output, which features inherently pipelined and independent
scheduling. We further show that this system with RR sched-
ulers has close correspondence with iSLIP, and we prove that,
like iSLIP, it can deliver 100% throughput under uniform
traffic (Section 3.3). Last, using simulations, we demonstrate
the performance increase with multicell output buffers (Section
4): as more inputs are allowed to send cells for the same output
in parallel, performance approaches that of buffered crossbars.

These results have both theoretical and practical importance.
With buffered architectures in mind, (i) we demonstrate how
regulated admissions can reduce the number of queues by a
factor on the order of N , while still operating effectively;
and (ii), we show how to eliminate the dependence on the
propagation delay between the line-cards and the fabric when
sizing fabric queues. The other way around, starting from
unbuffered crossbar architectures, our system demonstrates
that allowing two cells for the same output to concurrently
enter the fabric enables inherently pipelined and independent
scheduling, similar to buffered crossbars scheduling. Pipelined
unbuffered crossbar schedulers ([9][10]) typically employ
multiple crossbar schedulers, each one comprised of non-
independent schedulers, which is only a halfway solution.
In addition, we show how the backpressure buffer flow-
control can desynchronize the independent schedulers, and we
demonstrate how performance increases with buffer storage.

Our results are of interest primarily for fabrics consisting
of multiple switches. For a single N ×N switch implemented
as crossbar, placing fewer than N 2 buffers “near” its outputs
is awkard, because we would have to increase the output
throughput of the crossbar, which often costs more than the
reduction in memory bits. However, an N×N switching fabric
will often contain less than O(N 2) switching elements; even
if each switching element is internally a buffered crossbar, the
entire fabric will contain less than O(N 2) buffers. Studying
the behavior of an entire fabric would be too complex for a

first investigation like this one; however, the main message of
this paper is as follows. There are scalable scheduling methods
that can be used to control the number of cells that are allowed
to enter the fabric. These methods are scalable because they
consist of independent per-output and per-input schedulers,
cooperating in a pipelined fashion. Once the number of cells
entering the fabric is properly controlled, a limited amount of
buffer space inside the fabric suffices to achieve high perfor-
mance. Our model is crude because it assumes that all buffer
space is concentrated at the outputs, however it constitutes
a first approximation towards studying the switching fabric
itself; the results are so encouraging that they suggest that this
can be a promising approach for flow control and congestion
management in buffered multistage switching fabrics.

This study can also be of interest for optical switches.
Scheduling can be dramatically simplified if the optical switch
contains a small (e.g. one-cell), fixed-delay, fiber delay line
(FDL) at each output; a cell will need to be stored on an
output FDL for one or a few cell times.

1.2 Previous Work

Reference [12] considers a switch with FIFO inputs queues
(not VOQs), and infinite output queues accepting a limited
number of concurrent arrivals. Our difference from this study
is that we consider VOQs and finite output queues, and that
we study the emerging scheduling and flow-control problems.
Reference [14] describes a request-grant protocol incorporat-
ing buffer allocation but applies this scheme to a buffer being
fed by a single input. This scheme is intended for unbuffered
architectures employing crossbar scheduling; per-input syn-
chronization buffers are used to compensate for differences
in the propagation delays. Instead, we use our request-grant
protocol for queues shared among multiple inputs. In [13],
the authors provide a flow-control scheme with scheduling
and routing being performed in advance of packets (data-
flits) by special packets (control-flits). Although their scheme
results in efficient buffer usage, in our understanding it requires
buffers to grow with turn-around delay. Our methods apply in
the intra-switch context, not in an interconnection network as
theirs, and in addition we do not need buffers to increase with
turn-around delay.

We also regard as relevant with ours the work in [16],
which demonstrates the PRIZMA shared-memory switch ar-
chitecture. The output queue “grant” flow-control protocol
that they use is actually a type of On/Off backpressure,
which is does not to utilize buffers as efficiently as credit-
based backpressure. In principal, this protocol, in contrast
to classical credit-based backpressure, enables queue sharing
among multiple inputs; however it works efficiently only if
each queue has designated space for all N inputs. Therefore,
as the designers of PRIZMA chip set comment, the fabric
requires O(N2) packet buffers in total, in order for fair and
independent scheduling to be realized. In this paper we show
how our “request-grant” credit protocol can be used for fair
independent scheduling with just O(N ) packet buffers.
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Fig. 1. N inputs sharing a RTT · λ switch queue.

Finally, we view as an ancestor of our request-grant credit
protocol reference [17] describing the IBM SP2 switch archi-
tecture, which is comprised of the Vulcan, shared-memory,
switching elements. The Vulcan switch node utilizes requests
and grants to schedule accesses to it’s single-ported shared-
memory, and hence to economize in memory bandwidth rather
than economizing in memory size as we do. We believe that
in the absence of memory bandwidth limitation, a type of
On/Off flow-control could equally well be employed, since the
round-trip time within the Vulcan node is very small (one or
two clock-cycles); and, 1KB shared-memory is large enough
to accomodate concurrent (1-byte) flit arrivals from all input
ports to any output port of the 8 × 8 Vulcan switch chip.
(Essentially, the Vulcan shared-buffer contains more than N 2

flit (or chunks of 8 flits) locations). Furthermore, our target
besides to memory savings is to utilize this protocol in a
multistage fabric enforcing congestion management.

2 . REQUEST-GRANT BACKPRESSURE

In this Section we present a novel variant of credit-based
backpressure, which enables queue sharing among multiple
upstream inputs. Under typical credit-based backpressure flow-
control, each upstream input is assigned private credits which
correspond to a dedicated RTT · λ queue inside the fabric.
In effect, inputs may forward traffic in “blind-mode”, without
taking into account what other inputs do, and will only sense
output contention through the lack of credits. Hence, even
when congestion is present, all inputs may send one RTT · λ
worth of traffic for a particular destination which will reside
inside fabric queues.

A crucial observation, which can lead to buffer savings,
is that when the aggregate of these queues is served with
peak rate λ, one RTT · λ of queued traffic suffices to prevent
(aggregate) queue underflow. Though, it is not acceptable to
divide RTT · λ buffer credits among the inputs, because this
will work only when all inputs have traffic; therefore, to
achieve this potential economy on buffer space, inputs must
share buffer credits.

Consider that the input line-cards upstream to the switch
have access to a common credit-counter for a switch queue
that they intend to share –see figure 1. As in credit-based flow-

control, each input must first secure credits before sending its
data downstream. To resolve credit contention, which appears
when multiple inputs concurrently need credits, the reservation
is performed by first issuing a request to a credit scheduler
authorized to perform credit allocation. Requests wait inside
request queues for their turn to be served, and the scheduler
considers as eligible only those requests demanding credits
that are available. When it selects one, it decrements appropri-
ately the buffer credit-counter, and replies to the issuing input
via a grant. The recipient of the grant, having the required
credits reserved, can safely proceed to the corresponding data
transfer. For the flow-control to be complete, the shared credit-
counter is incremented when traffic departs from the associated
packet queue via feedback signals (credits) that travel to the
credit scheduler.

The rate R, at which the scheduler hands credits out,
must be R≥λ. If R>λ, the credit-scheduler may occasionally
produce bursts of grants, but its effective rate will be dictated
by the rate that credits are released, ie, λ. The round-trip time
in this protocol equals the delay from a cell departure that
increases the shared credit-counter, till a cell which reserves
the newly released credits reaches the output queue and is
ready for transmission. The request corresponding to the latter
cell can be in advance (of the credit release) inside the request
queues, hence the round-trip time (and the associated queue
space) is comparable to that of credit-based backpressure.
Observe that it is straighforward to prevent overflow of the
the request queues, if each input interprets grants as “credits”
to send new requests1. With fixed-size cells, the request queues
can be implemented using counters.

The advantage of the request-grant backpressure scheme is
that one RTT ·λ packet queue suffices to support full line-rate
to any input that requests for it, whereas typical backpressure
needs N such queues; when the collective demand from the
inputs exceeds the line-rate, the excess traffic is effectively
backpressured. The drawback is that credits must be requested
through a separate opening transaction, therefore packet la-
tency under low traffic is increased.

3 . A SWITCH WITH SMALL OUTPUT QUEUES

In this Section we present a switch with one small queue
at each output, managed using request-grant backpressure.

3.1 Switch Description

Figure 2 presents our scheme. The input line-cards contain
large virtual output queues, and express their demand for an
output by issuing a request to the associated credit scheduler.
Outstanding requests are kept in request counters, organized
per-input (and per-output), which will be served in subsequent
cell times. Unmatched inputs, that wait for grant (credit), are
allowed to send new requests to the same or to other outputs;
thus, multiple grants from different outputs can be generated
concurrently for the same input. A grant scheduler associated

1To prevent underflow of the request queues, which in turn can result in
underflow of the packet queue, each input must be allowed to send a round-trip
time worth of requests in-advance, before it receives a new grant.
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Fig. 2. A switch with small output queues managed using request-grant
backpressure. Request and grant queues can be implemented using counters.

with the input selects one among them, sends it to the input
line-card, and keeps the remaining grants inside appropriate
grant queues, organized per-output, which will be served in
subsequent cell times. The input line-card responds to an
arriving grant by forwarding the corresponding cell, which
acknowledges the grant by generated by the credit scheduler;
when the cell starts departing from the output queue, the credit
assigned to it returns to the credit scheduler.

This organization of credit and grant schedulers resembles
schedulers for unbuffered crossbars, like iSLIP, but, by using
small output buffers, the present scheme is simpler. There is
no need for schedulers to coordinate their decisions on a cell-
time basis, as they do in iSLIP; instead, they can operate
independently, in a two-stage pipeline: in the first pipeline
stage, each credit scheduler independently produces a grant
and sends it to the corresponding grant (pipeline) queue; in
parallel with the first stage operations, each grant scheduler
(second pipeline stage) independently selects one among the
grants accumulated up to now inside its grant queues –not
considering the concurrent outcomes by the credit schedulers.
In this way, the matchings produced can be conflicting but
we do not care: if more than one input line-cards receive a
grant for the same output at the same time, the output buffer
will resolve the resulting conflict. This type of scheduling is
as simple as buffered crossbar scheduling.

Although global coordination is not imposed explicitly, and
the independent schedulers could synchronize in states of
poor throughput, they will tend to desynchronize as they do
in the iSLIP architecture [1]. The correspondence between
the present scheme and the iSLIP switch originates from
the following property. A “pending” grant generated by a
credit (output) scheduler that is not selected (accepted) by
the associated input (grant) scheduler will persist inside the
grant queues until it is matched. This is analogous to what
happens in iSLIP: an output continously grants an input until
their matching is accomplished.

With multicell output buffers a credit scheduler may produce
grants in consecutive cell times, in addition to a first pending
grant, thus providing matching opportunities for other inputs
as well. This means that multiple requests for the same output
can be acknowledged in parallel, and that the output buffers

will need to support concurrent cell arrivals. Assuming that the
latency of each individual scheduler (credit or grant) is one cell
time, the round-trip time will be greater than two cell times,
thus at least two-cell output buffers are needed. Of course, the
round-trip time additionally includes the propagation delay.
We now show how we can eliminate the dependence on this
parameter.

3.2 Making Queue Size Independent of Propagation Delay

In figure 2, the grant schedulers are positioned on the input
side of the switch node; alternatively, they could be placed on
the input line-cards. We will show that the placement of the
grant schedulers in the same chip with the credit schedulers,
as shown in figure 2, can eliminate the propagation delay P ,
from the effective round-trip time used in dimensioning the
output queues.

Essentially, a cell departure from the output buffer is com-
mitted when the corresponding grant is sent from the grant
scheduler; hence, the output buffer credits maintained by the
nearby credit scheduler can be incremented just after the grant
scheduler selection. Consider a grant, g, selected at time t by
a grant scheduler. Grant g, will drive the enqueue of a cell, pg,
inside the output buffer at time t+2·P . Assuming cut-through
operation, the output buffer will start draining immediately on
the arrival of pg–if it wasn’t draining already–, thus, in time
t + 1 + 2 ·P queue space will be available. This space can be
safely reserved for a new cell from time t+1. (In other words,
instead of waiting for returned credits from the output queues
inside the fabric, credits are returned to the output credit
schedulers from the nearby input/grant schedulers.) Using the
last optimization, the switch operates efficiently with two-cell
output queues supporting enqueues at rate 2 · λ: when the
demand for an output is high, cells and grants for this output,
of aggregate size 2 · P · λ, will be virtually “stored” on the
lines between the line-cards and the switch 2.

Lastly, consider that a final economy on buffer space is
possible –probably suitable for optical switches. We can imple-
ment single-cell output queues, and permit two pending grants
per output, as needed in order to compensate for the pipelined
schedulers latency. When two cells concurrently arrive at an
output, one of them will be stored inside the output buffer,
while the other one will bypass the buffer on its way to the

2When the credit scheduler hands credits out at rate higher than one (1)
credit/cell-time, we must be careful when performing these fast credit updates.
Say that at time i, k (> 1) grants for the same output are acknowledged by
(different) input schedulers in parallel; in this case, the output credit count
must not be incremented by k at once, since the output credit scheduler may
then drive multiple (>1) new cell arrivals in time t + 1 + 2 · P , whereas
only one new cell position in the buffer will be available on that time. Hence,
in order to remove the propagation delay from the effective round-trip time,
we must ensure either that the credit schedulers serve requests at peak rate
λ, or that the credit count is always incremented at that rate. In early stages
of our simulator, not performing credit updates correctly lead us to believe
that, performance considerably benefits by increasing the credit scheduler rate;
however, this was due to output buffers growing beyond the limit that we had
placed on them –actually, the credit scheduler rate improves performance,
but only under smooth (e.g., Bernoulli) cell arrivals, and medium loads (see
Section 4, fig. 5.).
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output. In the next cell time, the stored cell can depart for the
output3.

3.3 Throughput under Uniform Traffic

Let Q denote the number pending grants allowed per output
–equivalently, the number of credits per-output–, and SD the
pipeline scheduling latency, ie, the sum of credit and grant
schedulers delays. With SD=1 and Q=1, it is trivial to prove
that the throughput of the switch with RR schedulers, under
fixed-size cell uniform traffic can reach 100%. Assuming
100% uniform load, after a point all request queues will be
persistent. If gk,i denotes the number of cells inside the grant
queues of input i in cell time k, then, it is easy to show that:

gk+1,i =



















0, gk,i ≥ 1, gk,i−1 = 0 (1)
1, gk,i > 1, gk,i−1 ≥ 1 (2)
gk,i − 1, gk,i ≥ 1, gk,i−1 = 0 (3)
gk,i, gk,i > 1, gk,i−1 ≥ 0 (4)

where i − 1 = (i + N − 1) mod N . Then, from [11], it
follows that at most after N − 1 time-slots, all inputs will
continously have a non-empty grant queue (gt,i > 0, ∀ t >

k+N−1, ∀ i ∈ [1, N ]); hence, the switch will reach 100%
throughput.

For the more practical system, with two cell times pipeline
scheduling latency, and Q=2, a possible proof for the 100%
throughput capability would not be trivial at all. The problem
lies in that we cannot easily identify the input that an output
will grant after it receives a credit from a grant scheduler, since
it may have already granted several subsequent inputs utilizing
the second available credit. We have proved that a system
with SD=2 and Q=2, can provide 100% throughput when the
grants generated by the same output are acknowledged by the
grant schedulers in their generation order. However, as figure

3Assuming credit scheduler peak rate one (1) grant/cell-time–, at most one
new cell will arrive in this next cell time. The new cell can be stored inside
the output queue, while the previously stored cell departs.
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3 demonstrates, desynchronization and 100% throughput are
achieved even with Q > 1, even if no dependency is being
enforced between the pending grants –[18] discusses this
issue in more depth. Actually, our simulation results indicate
performance improvements as Q increases.

4 . SIMULATION RESULTS

The performance of the switch with RR schedulers was
evaluated under uniform and unbalanced traffic using simu-
lations. Simulations were run long enough to eliminate the
effect of any initial transient, and the confidence intervals
achieved were better than 10% around the reported values
with confidence 95%4. In the plots that follow, we measure
cells average delay in number of cell times (cts). Note that
the round-trip time equals 2 · P + SD, and that the minimum
recorded cell delay in all systems equals zero (we have
removed the request-grant, cold-start delay overhead, as well
as scheduling and propagation delays).

First, we use uniform Bernoulli arrivals and we compare
the switch proposed here for different Q values, to the iSLIP
switch (iterations 1, 2 and 4), and to a buffered crossbar
with one cell buffer per crosspoint; all simulated switches are
32×32. Our cell delay results are presented in figure 4. A first
point is that thanks to the desynchronization effect, for any Q

value our system saturates near 1.0 input load. Q1 behaves
very close to 1SLIP. With increasing Q, instances upon which
an input does not receive a grant are expected to occur less
frequently, and therefore delay improves. The delay of Q12
approaches that of the buffered crossbar (bufxbar); under
smooth arrivals, we found no benefit in further increasing Q

–reference [3, fig. 3] demonstrates that the delay of bufxbar

essentially matches ideal output queueing.
Figure 4 shows that at medium loads, for any Q value

the delay of our system is slightly higher than bufxbar. We
believe that these small discrepancies can be ascribed to the
following behavior. At medium loads, occasional small bursts
of cells for a switch output, from different inputs, enter the

4In throughput experiments, confidence intervals where better than 1%
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fabric of our switch only at the rate the credit scheduler
admits cells inside, ie, 1 cell per-ct; in the buffered crossbar,
such bursts may enter the fabric immediately, bypassing input
contention. These “deferred” admissions in our system in-
crease input contention and thereby cell delay. To support this
argument we increase the rate R, at which each independent
credit scheduler hands credits out 5. Figure 5 shows our results
for Q=4 and varying R. For R > 1, the cell delay at medium
loads approaches bufxbar because of more cells skipping
input contention.

Next we evaluate the effect of switch size. Now figure 6
presents our results. We see that when Q is small, performance
declines with increasing N . This behavior, also present in the
iSLIP switch with few iterations [1], should be ascribed to
harmful synchronizations among the credit (output) schedulers
becoming more severe as the number of switch ports grows;
but with increasing Q, the dependence on switch size vanishes
because schedulers can desynchronize faster. Under Bernoulli
arrivals, and for any switch size N in {32, 64, 128}, we found
no benefit in increasing the output queues beyond 12 cells.
This suggests that even from the point of view of performance,
output queues’ size does not have to increase with switch size,
as in buffered crossbars or in the shared-memory architectures
[16]. The performance of a 128 × 128 switch, with 12 cell
buffers per output, approaches that of an equal size buffered
crossbar (and that of pure output queueing) which requires
approximately ten times more buffer space.

Following, we examine how performance behaves with
increased scheduling latency and propagation delay. Results
are presented in figure 7. A first observation is that P0-SD2-
Q2 outpeforms P0-SD1-Q1: it turns out, that the availability
of more credits per output in SD2-Q2 improves delay, even
though the individual schedulers communicate their decisions
with a cell time latency. Second, we see that our switch, by
incorporating early credit updates as explained in Section 3.2,
exhibits a performance that is independent of the propagation

5The grant schedulers still operate at rate λ, and cells enter the fabric from
a given input, and depart from a given output, at peak rate λ. Hence, increases
in R become functional only if Q large enough, otherwise the effective credit
scheduler rate is limited by the rate that credits are released, ie, 1 credit per-ct
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delay P : with constant Q, the switch performs equally well
for all P value that we examine (0, 1, and 100 cts). On the
other hand, a switch waiting for cell departures to increment
credits needs Q (and output queues) to grow with 2 ·P +SD.
This is manifested through the performance curve P1-SD2-
Q2 annotated by delayed-credit-updates: the round-trip time
is 2 ·P + SD= 4 cts, hence, with Q=2 the switch saturates at
load 0.5.

A final remark is that the conclusions inferred using previ-
ous experiments for systems with unit scheduling delay apply
equally well for the beneficial from the point of view of imple-
mentation system, with SD=2 cts and non-zero propagation
delay. We can see in figure 7 that P100-SD2-Q12 attains
very small delay. A 32 × 32 buffered crossbar switch with
P=100 cts, achieving comparable performance with P100-
SD2-Q12, requires 204 K of cell buffers, whereas P100-
SD2-Q12 uses only 384. With increasing switch size, the cost
reduction achieved increases even more.

This paper does not deal with bursty cell arrivals; bursty
arrivals reveal some issues, which call for additional mech-
anisms; due to space limitations, these mechanisms are dis-
cussed in an extended version of this paper [18].

Last we experiment with unbalanced traffic. We borrow
the unbalanced traffic model of [4], where each input, i,
sends most of its traffic to a private “favored” output –in our
experiments to output i. As in [4], w denotes the unbalanced
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factor; when w=0 traffic is uniform, whereas when w=1 the
switch is loaded by a persistent permutation. Our results,
presented in figure 8, show that the throughput of Q1 can be
as small as 0.63 for intermediate w values, which is also the
throughput of the 32× 32 1SLIP switch –see [3, fig. 6]. With
increasing Q, throughput improves fast; for Q4 throughput is
higher than 0.9, for Q12 higher than 0.97, and for Q32 higher
than 0.99.

The intuition that throughput increases with buffer size
can be better elucidated under this traffic model. Consider
a heavily loaded flow, fi→i. Under unbalanced traffic, for
intermediate w values, the input neighbors of f are occa-
sionally active, thereby increasing during these periods the
input contention that f faces; similarly, the output neighbors
of f are occasionally active, increasing output contention.
Therefore, output i can be underutilized when f experiences
input contention and f ’s output neighbor flows are not active.
A large output buffer (Q) absorbs traffic from f during the
output contention periods, and occupies with that traffic the
output when f experiences increased input contention. On the
other hand, the throughput of the buffered crossbar is relative
low due to memory partitioning: even though the crossbar
contains 32 cell buffers per output, each heavily loaded flow
can access only its private, single-cell, crosspoint queue.

5 . CONCLUSIONS

We presented a method to reduce the amount of internal
buffer space in a switching fabric by a factor of the order
of N ; we also showed how the propagation time dependence
can be removed when sizing fabric queues. We applied our
methods in the design of a switch with small output queues,
allowing a limited number of conflicts per output (Q), which
features simplified scheduling and good performance. For this
switch we showed how performance changes with varying
Q: performance is close to that of unbuffered crossbars for
Q=1, and increases with Q, approaching that of buffered
crossbars for Q=12. A value of Q ≥ 2 enables independent
and inherently pipelined scheduling. Of course, a fabric that
supports multiple output conflicts requires output queues run-
ning at a speed of multiple λ’s. Our results indicate that Q,

and therefore queue speed, does not have to increase neither
with switch size nor with propagation delay; hence, techniques
for high-bandwidth buffers, originating from shared-memory
architectures ([15][16]), can be used in our switch in a scalable
way.

REFERENCES

[1] Nick McKeown: ”The iSLIP Scheduling Algorithm for Input-Queued
Switches” IEEE/ACM Trans. on Networking, vol. 7, no. 2, April 1999.

[2] P. Krishna, N. Patel, A. Charny, R. Simcoe: ”On the Speedup Required
for Work-Conserving Crossbar Switches”, IEEE J. Sel. Areas in Com-
munications, vol. 17, no. 6, June 1999, pp. 1057-1066.

[3] D. Stephens, H. Zhang: ”Implementing Distributed Packet Fair Queueing
in a scalable switch architecture”, Proc. IEEE INFOCOM Conf., San
Francisco, CA, March 1998, pp. 282-290.

[4] R. Rojas-Cessa, E. Oki, H. Jonathan Chao: ”CIXOB-k: Combined Input-
Crosspoint-Output Buffered Switch”, Proc. IEEE GLOBECOM’01, vol.
4, pp. 2654-2660.

[5] N. Chrysos, M. Katevenis: ”Weighted Fairness in Buffered Crossbar
Scheduling”, Proc. IEEE HPSR’03, Torino, Italy, pp. 17-22.
http://archvlsi.ics.forth.gr/bufxbar/

[6] Manolis Katevenis, Giorgos Passas, Dimitris Simos, Ioannis Papaefs-
tathiou, Nikos Chrysos: ”Variable Packet Size Buffered Crossbar (CICQ)
Switches”, Proc. IEEE ICC’04, Paris, France, vol. 2, pp. 1090-1096.
http://archvlsi.ics.forth.gr/bufxbar

[7] N. Chrysos, M. Katevenis: ”Multiple Priorities in a Two-Lane Buffered
Crossbar”, Proc. IEEE Globecom, TX, USA, 29 Nov. - 4 Dec. 2004,
CR-ROM paper ID ”GE15-3”.

[8] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis: ”A Four-
Terabit Packet Switch Supporting Long Round-Trip Times”, IEEE Micro
Magazine, vol. 23, no. 1, Jan./Feb. 2003, pp. 10-24.

[9] E. Oki, R. Rojas-Cessa, H. J. Chao: ”A Pipeline-Based Approach for a
Maximal-Sized Matching Scheduling in Input-Buffered Switches”, IEEE
Communication Letters, vol. 5, no. 6, pp. 263-265, June 2001.

[10] C. Minkenberg, I. Iliadis, F. Abel: ”Low-latency pipelined crossbar
arbitration”, IEEE GLOBECOM’04, Dallas, Tex., CR-ROM paper ID
”GE15-2”.

[11] Yihan Li, Shvendra Panwar, H. Jonathan Chao: ”On the Performance
of a Dual Round-Robin Switch”, IEEE INFOCOM’01 vol. 3, pp. 1688-
1697.

[12] S.Q.Li: ”Performance of a Nonblocking Space-Division Packet Switch
with Correlated Input Traffic”, IEEE Trans. on Communications , vol.
40, no. 1, Jan. 1992, pp. 97-107.

[13] Li-Shiuan Peh, Willia J. Dally: ”Flit-Reservation Flow Control”, Proc.
of the 6th Symposium on HPCA, Toulouse, France, January 2000, pp.
73-84.

[14] PMC-SIERRA: ”Linecard to Switch (LCS) Protocol”, http://www.pmc-
sierra.com/pressRoom/pdf/lcs wp.pdf

[15] M.Katevenis, P.Vatsolaki, A. Efthymiou: ”Pipelined Memory Shared
Buffer for VLSI Switches”, Proc. of the ACM SIGCOMM’05 Conf.,
Cambridge, MA USA, pp. 39-48.

[16] R.P.Luijten, T.Engbersen, C.Minkenberg: ”Shared Memory Switching +
Virtual Output Queuing: a Robust and Scalable Switch” Proc. of the
IEEE ISCAS, Sydney, Australia, May 2001, pp. IV-274-IV-277.

[17] C.B.Stunkel et. al.: ”The SP2 High-Performance Switch”, IBM Systems
Journal, vol 34, no. 2, 1995.

[18] N. Chrysos, M. Katevenis: ”Scheduling in Switches with Small Internal
Buffers: Extended Version”,
http://archvlsi.ics.forth.gr/bpbenes

Draft of 22 July 2005 –to appear in Proc. IEEE Globecom 2005 7


