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Abstract— The crossbar is the most popular packet switch
architecture. By adding small buffers at the crosspoints, im-
portant advantages can be obtained: (1) Crossbar scheduling
is simplified. (2) High throughput is achievable. (3) Weighted
scheduling becomes feasible. In this paper we study the fairness
properties of a buffered crossbar with weighted fair schedulers.
We show by means of simulation that, under heavy demand,
the system will allocate throughput in a weighted max-min fair
manner. We study the impact of the size of the crosspoint buffers
in approximating the weighted max-min fair rates and we find
that a small amount of buffering per crosspoint (3-8 cells) suffices
for the maximum percentage discrepancy, to fall below 5% for���������

switches.

1 . INTRODUCTION

Switches, and the routers that use them, are the basic build-
ing blocks for constructing high-speed networks that employ
point-to-point links. As the demand for network throughput
keeps climbing, switches with an increasing number of faster
ports are needed. At the same time, mechanisms are sought for
higher sophistication in quality of service (QoS) guarantees.
The crossbar is the simplest fabric for high-speed switches. It
is the architecture of choice for up to several tens of ports,
although for higher port counts, 	 , the order of the crossbar
cost, 
���	�
�� , makes other alternatives more attractive. The
hardest part of a high-speed crossbar is the scheduler needed
to keep it busy.

With virtual-output queues (VOQ) at the input ports, the
crossbar scheduler has to coordinate the use of ��	 inter-
dependent resources. Each input has to choose among 	
candidate VOQ’s, thus potentially affecting all 	 outputs; at
the same time, each output has to choose among potentially
all 	 inputs, thus making all ��	 port schedulers depend
on each other. Known architectures for high-speed crossbar
scheduling include [1] [2] [3]; their complexity and cost
increases significantly when the number of ports rises, thus
negatively affecting the achievable port speed.

An advanced form of quality of service (QoS) architecture
uses weighted round-robin (WRR) scheduling –often in the
form of weighted fair queueing (WFQ) [4]– which takes
weight factors into consideration when determining “equality”.
This type of scheduling is needed when some customers pay
more than others, or when each flow is an aggregate of a
different number of sub-flows and we wish to treat sub-flows
equally. The weight factors may be static (during the lifetime
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of connections), or they may change dynamically, e.g. in the
case of varying aggregate membership, or when we want
inactive sub-flows not to count toward the weight of their
aggregate.

Existing crossbar schedulers either ignore QoS issues, or
provide only static priorities and round-robin scheduling [2]
[3]. Weighted round-robin behavior is very hard to achieve
in crossbar schedulers while still maintaining high crossbar
utilization (near-maximal matches) [5]: many iterations are
needed to yield high-occupancy matches, thus severely lim-
iting the port speed at which these schedulers can be used.
The solution commonly used, today, is to provide significant
internal speedup: the crossbar port rate is higher than line rate
by a factor of � , considerably greater than 1.

While internal speedup is a good solution, it does incur
significant cost: (a) the crossbar is more expensive ( � times
higher throughput), (b) the buffer memories are more expen-
sive ( ������������� times higher throughput), (c) the crossbar
scheduler must run � times faster and (d) the number of buffer
memories is doubled: besides input queues, output queues are
needed as well 1.

An alternative solution, with the potential to yield both
faster and less expensive switches, is to use buffered cross-
bars. By adding even small amounts of buffer storage at the
crosspoints, the scheduling problem changes radically and is
dramatically simplified: the ��	 schedulers, 	 at the inputs and
	 at the outputs, work independently of each other, since each
of them deals with only a single resource. The ��	 schedulers
are still coordinated but only over longer time-scales, through
backpressure feedback from the crosspoint buffers. It has been
shown that such buffered crossbars allow efficient distributed
scheduling schemes[6][7][8].

Of-course, the major cost of buffered crossbars is that 	�

additional buffers are needed, one at each crosspoint. For a� �! � � crossbar with 4 priority levels and two 64-byte cells of
storage per crosspoint and priority level, the total buffer space
in the crossbar is 8 K cells or 4 Mbits, which is clearly feasible
in current ASIC technology. Up to a few years ago, this much
memory was very expensive or even unrealistic for a single-
chip implementation of the crossbar, and this was the reason
why crossbars were usually bufferless, and the majority of
research concerned such bufferless crossbars. Today however,

1Note that output queues are also needed for cell-to-packet reassembly,
and for sub-port demultiplexing, when desired. However, buffered crossbar
have the potential of eliminating cell-to-packet reassembly, because they can
operate directly with variable-size packets.
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this amount of SRAM is quite feasible in crossbar ASIC’s.
Furthermore much larger buffer memories are soon becoming
feasible: for example, by dedicating 100 ����
 of a 0.13 ���
ASIC to SRAM, 40 Mbits of buffer memory will become
available (at 2.5 ��� 
 per bit [9]); this suffices for a ���  ����
crossbar, with 4 cells per crosspoint and per priority level.

Concerning power consumption, although the number of
memories is 	 
 , at most ��	 of them are active at any given
time, for unicast traffic. Also, power consumption in the buffer
memories that are introduced will normally be lower than
in the crossbar buses that already existed, because internal
memory buses are much shorter than crossbar buses, while
the throughput of both types of buses is the same (considering
separate write and read buses in the memories).

In this paper we study a buffered crossbar with a
WRR/WFQ scheduler at each input and output. First, we
make the assumption of persistent sources, i.e. input-output
connections with either constantly empty or constantly full
VOQs. The assumption about persistent flows is what models
the short-term behavior of a network under transient overload.
In the long run, wide-area or end-to-end flow control will
hopefully adjust the rates of individual flows so that the
egress links of the switch are not oversubscribed. If these
output links were never oversubscribed, the scheduling policies
inside the switch would not matter and buffer memories would
not be needed. However, short-term overloads do appear,
due to the variability and unpredictability of traffic. Modern
commercial switches have hundreds of megabytes of buffer
storage, because they anticipate transient overload periods up
to a fraction of a second. During such overload periods, it
is the schedulers in the switch that allocate output bandwidth
to the contending flows, thus determining the QoS that these
flows receive. We model the behavior of the switch during
the overload periods using persistent flows for the non-empty
queues and inactive flows (or equivalently zero weight factors)
for the empty queues. Using a simplified fluid model, we
show that this system will allocate service in a weighted
max-min (WMM) fair manner (section 2). Simulations verify
this property and also examine the amount of buffering per
crosspoint for sufficiently good approximation of the ideal
WMMF allocation (section 3). We also study which weight
factor combinations yield the best WMMF approximation, and
the impact of the scheduling disciplines used at the inputs
and the outputs. Finally, we present preliminary results for the
case when some flows are source limited to a level just below
their WMM fair share – that is some flows are not persistent.
Section 4 compares our results to previous work.

2 . SYSTEM

Figure 1 shows the model of the 	  	 switch system
that this paper deals with. We consider one of the priority
levels in a system; our results apply to any priority level
in a real system, after subtracting from the link capacities
the throughput already allocated to flows at higher priority
levels. There are virtual output queues (VOQ) at the 	 inputs,
containing fixed-size cells. The core of the system is an 	  	
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VOQ’s

Fig. 1. System model assumed in this paper.

crossbar containing 	 
 small queues, one per crosspoint.
Backpressure flow-control ensures that the crosspoint buffers
will never overflow.

Flows are determined as input-output pairs. Each flow � cor-
responds to a crosspoint buffer and has a unique weight factor	�
 . All schedulers use the Start-time Fair Queuing (SFQ) [10]
scheduling discipline, which is a variant of WRR/WFQ. SFQ
has complexity 
��
�
��� 	 � , and can be implemented at high
speed, e.g. using a tree of comparators exploiting bit-level
parallelism [11]: the minimum of 256 twenty-four-bit numbers
can be found in 4.5 ns in 0.18 ��� CMOS technology. The
backpressure information overhead is on the order of 	 bits
per input and per time-slot.

2.1. Analysis under Persistent Sources

Consider that all 	 
 VOQs corresponding to the 	 
 flows
are either continuously full (call the respective flow ”active”)
or continuously empty (call the respective flow ”idle”). Under
this assumption, the only reason for an active flow to be
ineligible at its input server is that backpressure is on. At
the output server an active flow is ineligible if its crosspoint
buffer is empty.

Distributed crossbar scheduling operates roughly as follows.
Initially, when all crosspoint buffers are empty, each input
scheduler serves each flow according to its fair share. The
schedulers at different inputs operate independently; even
if they happen to transmit cells to the same output in the
same time slot, the crosspoint buffers keep the cells until the
output scheduler reads them one by one. Output schedulers
are initially forced to serve the few non-empty crosspoint
buffers. As more and more buffers fill up, output schedulers
start enforcing their fair shares.

The fair share of a flow at the output will, in general, differ
from its fair share at the input. If the output fair share is higher,
the output scheduler will attempt to read from the buffer more
frequently than the input scheduler writes into it. As a result,
the buffer will often be empty, and the flow will often be
ineligible for the output scheduler; thus, the bandwidth of
such a flow is dictated by the input scheduler allocation. On
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the other hand, if the output fair share of a flow is lower
than its input counterpart, the buffer will gradually fill up,
because the output reads it less frequently than the input writes
into it. When the buffer fills up, backpressure will make this
flow ineligible at the input, thus reducing its input service-
rate until it equals the rate dictated by the output scheduler.
In this way, in the long run, the service-rate allocated to each
flow becomes the smaller of the rates that its input or output
allocate to it. Because schedulers are work conserving, they
will always serve a flow as long as there is at least one eligible.
Thus, the bandwidth that remains unused by ineligible flows
is distributed to the eligible ones according to the latter flows’
fair share. Eventually, this redistribution will yield WMM fair
allocations, as discussed below in more detail.

1) Fluid Model: The behavior of the system and its analysis
are simplified when we replace discrete cells with an infinitely
divisible fluid, and WRR/WFQ schedulers with ideal general-
ized processor sharing (GPS) servers [12]. In this fluid model,
for each flow � , there is an input GPS server and an output
GPS server. The rates that these two servers allocate to � may
differ only during times when � ’s buffer is neither empty nor
full; when the buffer fills up or is emptied, the higher of the
two rates is forced to become equal to the lower one.

Theorem 1: Assume (a) a fluid model with GPS servers
for a buffered crossbar; (b) finite size of buffer space at each
crosspoint; and (c) all flows have either continuously empty
or continuously full VOQs. Then, all flows will receive exactly
their weighted max-min fair (WMMF) rates.
The proof of this theorem, which can be found in an extended
version of this paper [13], shows that flows reach their final
stable state in the same sequence that the WMMF algorithm
works, i.e. in the sequence of non-decreasing utility under
WMM fairness ( � 
�� �������
	� �
��������	 ). When a flow � stabilizes
to its WMM fair rate, its crosspoint buffer becomes either full
or empty. For a full buffer, � ’s output fair share limits its
service rate (output share is smaller than input share, and �
is bottlenecked at the output) and its remaining input share
is transferred to the other flows that use the same input and
deserve higher utility than � under WMM fairness. The result
is the same when � ’s input fair share limits its rate. So, flows
“find” their final input and output fair shares only after all
input or output “neighbor” flows that deserve smaller WMM
fair utility have stabilized to their WMM fair rates. This shows
that a rate discrepancy from the WMM fair rate for a flow can
be propagated to neighbor flows with greater WMM fair utility.

2) Discrepancies in a Non-Fluid System: A real system
with discrete cells differs from the above ideal fluid model.
The WRR/WFQ scheduler assumed in section 2 will precisely
allocate rates according to the fair shares only in the long run,
and only if the set of eligible flows stays fixed. For the set
of eligible flows to stay fixed, crosspoint buffers have to be
large enough so that normally-full buffers never empty, and
normally-empty buffers never fill up. Consider a normally-full
buffer: although its input scheduler is supposed to fill it more
frequently than its output scheduler empties it, actual service is
not perfectly smooth, and this fluctuation may cause the input

scheduler to occasionally be late in refilling the buffer while
the output scheduler may occasionally be early in emptying
the buffer. As stated in the previous paragraph, an occasional
rate discrepancy of a single flow can be propagated to other
flows as well.

3 . SIMULATION RESULTS

3.1. Simulation Environment

Our simulator operates at time-slot (the time required to
receive or transmit a cell) granularity. The simulator uses unit-
delay backpressure: consider an input scheduler that decides,
in time-slot � � , to serve a flow � whose crosspoint buffer
was empty; � becomes eligible for the decision made by
its output scheduler in time-slot � ����� . Similarly, consider an
output scheduler that decides, in � ����� , to serve a flow � whose
crosspoint buffer was full; g becomes eligible for the decision
made by its input scheduler in � ��� 
 . Under these assumptions,
two cells worth of buffer space per crosspoint suffices so that
a flow experiencing no competition at the input and at the
output to be served at full link rate (1 cell per time-slot).

We use Relative Error, ��� , as our metric to evaluate
convergence accuracy to WMM fairness. Given a simulation
interval, the Relative Error of the rate for each flow � is defined
as:

��� 
 �
� �! �
"$# ��%'&)(+*-,  & 
�.0/ #-,1(2%3&�(+*-,  & 
 �/ #-,1(2%3&�(+*-,  & 


where
�! �
"4# ��%3&�(+*-,  & 
 is the number of cells of � that exited

the switch during the simulation interval, and / #-,1(2%3&�(+*-,  & 

is the rate allocation to � according to WMM fairness,
multiplied by the length of the simulation interval, i.e. it is � ’s
expected service in number of cells. The ��� 
 measurements
started 500K time-slots after the beginning of simulation, and
extended as long as needed to reach a confidence interval of576 5 � with confidence 8:9-; . We then extracted the average and
the maximum (worst-flow) of the ��� 
 values over all active
flows � . Each simulation was repeated 10 to 40 times, with
different sets of (randomly chosen) weight-factors each time;
we report the mean average and the mean maximum ��� 
 ’s
of these runs.

In the following results, we configured each flow indepen-
dently to be either active or idle with probabilities � and � . �
respectively. In all results except the one in section 3.6, all
active flows are fed by persistent VOQ sources.

3.2. Effect of Weights Distribution

First we present the convergence accuracy under three
different weight distributions for the active flows. In the
configuration called uniform, all active flows have a random
weight factor picked uniformly in the interval < �>= � 5>5 ��? . In
the skewed-@ configuration, the weight of a flow from input ,
to output @ is chosen through the following random process< � � � 5 @ � unif rand � 5 = � 5 @ �A? , whereas in the configuration
called skewed-@ 
 through < � � � 5 @ 
 � unif rand B 5 = � 5 @ 
�CD? . We
used skewed distributions in order to create imbalanced weight
factors: a flow to an output with high index will probably have
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Fig. 2. Average and worst-flow ��� for different weights distribu-
tions;

����� ���
switch, all flows active.

a large weight, and thus a large input fair share. However, since
most of the flows using the same high-index output have large
weights, � ’s rate will be limited by its output fair share; hence
a large portion of its input fair share must be redistributed to
the other flows of the same input.

In figure 2 we plot both the average and the worst-flow��� for the three distributions discussed above, when all
flows are active. Under all configurations, we see that a
buffer size of 4 cells per crosspoint suffices to drive the
average RE below 1 %. In contrast to our first intuition, the
skewed distributions yielded much better accuracy than the
uniform one. We hypothesize that this is due to all flows being
bottlenecked at the outputs. A flow’s approximation to WMM
fairness is mostly affected by small discrepancies, when these
occur at the flow’s bottleneck server, since the rate of the flow
is dictated by that server. So when all flows are bottlenecked
at the outputs, occasional discrepancies in one flow’s service,
will only affect its output neighbors; input neighbors are not
affected considerably, since they are bottlenecked at outputs.
By contrast, in the uniform weights case, some flows are
bottlenecked at the inputs and some at the outputs; occasional
discrepancies in one server can propagate to more flows.

Besides their obvious importance for QoS accuracy, these
results also show how well a buffered crossbar can sustain full
output utilization for those outputs for which enough input
demand exists. For the outputs for which the fair rates add up
to 1, since the actual rates are within 1 % of the fair rates, it
follows that utilization is 99% or better.

3.3. Effect of Flow Activity

Figure 3 plots the maximum value of ��� over all active
flows, with uniformly chosen weight factors, under four dif-
ferent activity probabilities, � = 100%, 85%, 75%, 50%, 35%.
The average ��� is not affected considerably by the percentage
of idle flows, and we do not plot it.

We see that buffer sizes of 6 to 8 cells yield worst-case
errors bellow 5 % for any activity ratio. The system better
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Fig. 4. Average and worst-flow ��� for various switch sizes; uniform
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approximates fair allocations when there are less active flows.
This tendency can be attributed to the smaller number of flows
that each WRR/WFQ scheduler has to consider when there are
more inactive flows; fewer flows per scheduler result in less
jitter in their service time, therefore smaller probability for a
normally-full buffer to empty or a normally-empty buffer to
fill up.

3.4. Effect of Switch Size

Figure 4 plots the relative error (average and worst-flow)
for various switch sizes:

� �  � � , ���  ��� , and �����  ����� .
We observe that larger switches yield worse ��� for the worst
flow. On the other hand, the average ��� is rather insensitive to
switch size. We conclude that larger switches have a few flows
with reduced accuracy and many flows with good accuracy in
the process of finding WMM fairness. The reduced accuracy of
some flows can be attributed to larger jitter in the WRR/WFQ
schedulers (due to more flows in each scheduler).
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3.5. Effect of WRR/WFQ Schedulers Accuracy

While the SFQ service discipline that we used so far is
cost effective, other alternatives for WRR/WFQ scheduling
have proved to be more accurate. Figure 5 plots the average
and worst-flow ��� for SFQ versus � / 

� � [15] schedulers
at the inputs and outputs. � / 
�� � provides better accuracy,
due to the smaller jitter in the allocated service; however, the
improvement is not impressive.

3.6. Non-Persistent Sources

All simulations presented so far use persistent sources,
i.e. sources that request more service than their WMM fair
share. In our (ongoing) research, we are studying the transient
behavior of the system when sources rates change between
levels above and below their fair share [17]. We are also
studying the effect of sources with average rate below their

fair share but with probabilistic cell arrival times; in this
context, we configured one flow ( � ������� ) at each input ( , ) to
be fed by a Bernoulli i.i.d VOQ source, while the VOQs of
the remaining active flows are continuously full. The average
incoming rate of non persistent flows is configured slightly
below their WMM fair share 2. In Fig. 6, we plot the worst-
flow and the average ��� separately, for all active flows and
for the non-persistent ones. We see that with 3 cell buffers
per crosspoint, flows fed by non-persistent sources receive
service rate approximately equal to their WMM fair rate
(nonpersistent worst-case ��� is less than 1%). With 5-6 cells
per crosspoint the overall capacity of the switch is allocated
in a WMM fair manner (all worst-case ��� is less than 5%,
all average ��� is less than 0.1%). This means that the excess
capacity, left-over by the flows with low incoming rate, has
been fairly redistributed to the persistent ones.

4 . PREVIOUS WORK & CONTRIBUTION

Hahne [16] proved that per-flow buffering, per-flow back-
pressure, and round-robin scheduling indeed yields max-min
fairness, although, in some pathological cases, very large
buffers may be needed for that. The present paper differs from
[16] in that (a) we consider weighted rather than plain round-
robin and weighted rather than plain max-min fairness; (b) we
simulate small-buffer effects.

Stephens and Zhang [6] studied and simulated buffered
crossbars with WRR/WFQ schedulers, and proved their ability
to provide delay bounds to properly policed flows. These
delay bounds are based on the minimum rate guaranteed for
each flow, which is the minimum, over all links traversed
by the flow, of the ratio of the flow’s weight over the sum
of the weights of all flows traversing the link. They do not
consider the allocation of the excess bandwidth that results,
when flows’ minimum rate guarantees do not fully occupy
the capacity of the switch. The present paper differs from the
above, in that we study the allocation of excess bandwidth and
how well it approximates WMM fairness. Recently, Javidi e.a.
[7] examined buffered crossbars with longest-queue-first input
schedulers and RR output schedulers, and showed full output
utilization under some assumptions. Also Chao e.a. [8] studied
the throughput of a buffered crossbar with RR input and output
schedulers, under uniform and non-uniform input loads. They
examine the improvement of using additional buffering at the
crosspoints and also prove that with a small internal speed-
up, 100% throughput can be obtained even under non-uniform
loads. We consider their work as complementary to ours: we
use weighted rather than plain round-robin scheduling, and we
study the fairness properties under heavy load.

We are currently working on transient periods that occur
when flows switch state from active to idle and vice-versa, or
when the weight of a flow changes. Our preliminary results

2the minimum of their guaranteed service rate at the input and the output
servers, ����� ����� = min( � 	

� ������! "$#&%
��'
� ��� ")( � 	

� ������* "+#,%
��'
" �����

-
.

Because excess bandwidth exists, this rate is a bit lower than their fair share.
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concerning delay and unfairness during such transient periods
can be found in [17].
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