Weighted Fairness in Buffered Crossbar Scheduling

Nikolaos Chrysos and Manolis Katevenis

FORTH & Univ. of Crete, Greece
Crossbar Scheduling

- Multi-Resource Scheduler: Complexity Cost & Scalability issue
 - 1 cell per input => per-output decisions depend on each other
 - 1 cell per output => per-input decisions depend on each other
- Need multiple iterations and/or internal speedup (CIOQ)
- Fairness is an issue – weighted fairness is very hard
- Works only with fixed-size cells (segments)
Buffered Crossbar

- Independent schedulers, loosely coordinated via backpressure
- No global time frame needed
 - Variable-size packets acceptable
- Advanced QoS via sophisticated local disciplines
 - RR-RR; LQF-RR; WFQ-WFQ
- This paper: WFQ-WFQ ➔ Weighted Max-Min Fairness
Challenges, Issues

• Size of the Crossbar Chip Memory
 — Modern CMOS: several Mbits per chip
 => few Kbytes per crosspoint feasible
• Backpressure Overhead
 — Peak Rate: \(N \) per Input per Time-Slot
 (when all outputs select the same input at the same time-slot)
 — Average Rate: 1 per Input per Time-Slot

minor compared to the advantages
This Work

- Buffered Crossbar with WFQ/SFQ Schedulers & fixed-size cells
 - Arbitrary weights: Input Fair Share ≠ Output Fair Share
- We find that bandwidth allocation approximates Weighted Max-Min (WMM) Fairness
- We study the impact of:
 - Crosspoint Buffer Size
 - Weight Factors
- Results:
 - 2-6 cells/crosspoint ⇒ 1-5% accuracy (32x32 switch)
 - 2-4 cells/crosspoint ⇒ output utilization > 99%
Simulation Environment

• No speedup
• Persistent Sources (X% of them Active)
 – Models the short-term Switch Operation
 – Output utilization approx. 100% for most outputs, owing to excess Bandwidth redistributions
• Metric: Relative Error % (RE %)

\[
100 \times \frac{|\text{FairService}(f) - \text{SimulatedService}(f)|}{\text{FairService}(f)}
\]

• RTT = 1 cell time
• Each plot point = average of many (>20) runs with different/random weights
Crosspoint Buffer Size needed to achieve Low WMMF Error

- Worst-Flow RE < 5% with 6 cells/crosspoint
- Need more buffers to reduce RE
- But small buffers => less time to re-converge
 - ~ time for xpoint buffers to empty or to fill

\[(32x32 \text{ switch }, \ w_{ij} = \text{uniform_random}(10,1010))\]
Effect of Weight Distribution

- Average RE < 1\% (buffer size >= 4)
 => High output utilization
- Uniform distribution \(\Rightarrow\) worst results

(32x32 switch, 75\% active flows,

Uniform-weights: \(w_{ij} = \text{uniform_random}(10,1010)\)

Few-favored-output: \(w_{ij} = 10J^2 + \text{uniform_random}(0,10J^2)\))
Effect of Switch Size

- Worst Flow RE increases with Switch Size
 - More flows → more service jitter
- Average error...
 - Many flows with good accuracy
- WF^2Q+ smaller jitter → better convergence accuracy

 (75% active flows, uniform weights distribution)
Not-Persistent Flows

- One flow at each input with arrival-rate:
 - \(\text{MIN(InputFairShare, OutputFairShare)} \)
 - Less than WMM Fair rate
- Excess Bandwidth Redistributed Fairly

(75% active flows, uniform weights distribution)
Conclusions

• Buffered Crossbars
 – Scheduler Simplicity/ Sophistication
 – High throughput & Delay Guarantees
 – WMM Fairness

• Our Results:
 – High accuracy to Weighted Max-Min Fairness with 3-8 cells/xpoint
 – Service jitter and small crosspoint buffers reduces accuracy, but
 – Small xpoint buffers improve speed of convergence

• Current Research: directly switching variable Size Packets
 – Eliminating Speed-Up, Output Buffers, Fragmentation & Reassembly
Operation & WMM Fairness

- When crosspoint buffers empty
 - *Input Service = Input Fair Share*
 - *Some Flows Ineligible at Outputs*

- As crosspoint buffers fill-up
 - *Output Service ~ Output Fair Share*
 - *Some Flows Ineligible at Inputs*

- Eventually WMM Fairness -- maximizes MIN (Bandwidth / weight)
 - *Input Fair Share(f) > Output Fair Share(f)*
 - crosspoint buffer(f) usually FULL
 - *Output Fair Share(f) > Input Fair Share(f)*
 - crosspoint buffer(f) usually EMPTY