
Multiple Priorities in a Two-Lane Buffered Crossbar
Nikos Chrysos and Manolis Katevenisy

Institute of Computer Science - Foundation for Research and Technology - Hellas (FORTH)

ICS-FORTH, P.O. Box 1385, Vassilika Vouton, Heraklion, Crete, GR-711-10 Greece

http://archvlsi.ics.forth.gr/bufxbar/ - fnchrysos,katevenisg@ics.forth.gr

September 2003

Abstract— A significant advantage of buffered crossbars is
that they can directly switch variable-size packets. However
separate queues (or lanes) per priority at each crosspoint are
required to prevent HOL blocking and buffer hogging. In this
paper we study a variable-size-packet buffered crossbar that
effectively supports multiple priorities with only two such lanes
per crosspoint, by dynamically changing the effective priority of
crosspoint queues. Through simulations we show that when eight
priorities are supported, even under a highly irregular traffic
pattern, our system will not increase the average delay of any
priority by more than 75 percent compared to the ideal system
(which requires 4 times more buffering). Under realistic traffic,
the two systems perform almost identically. We also compare
multipriority variable-size-packet buffered crossbars to fixed-
cell ones; through simulations we verify that the latter need
significant speedup to reach the formers’ performance.

1 . INTRODUCTION

The crossbar is the simplest and most popular organization
for high performance (internally non-blocking) switches; it is
also the building block for switching fabrics. The crossbar
scheduling problem, inherent in all unbuffered crossbar archi-
tectures, consists of selecting a conflict-free match of inputs
to outputs; this match can only be computed in a centralized
fashion. Existing, practical crossbar schedulers ([1] [2] [3])
cannot simultaneously support high crossbar-utilization and
sophisticated Quality of Service (e.g. multiple priority levels or
WRR scheduling): when some connections are preferentially
selected over others, multiple iterations are required to produce
near maximal matches [4]. The solution commonly used today
is to provide significant internal speedup i.e., combined-input-
output queueing or CIOQ [5]. In CIOQ architectures (fig.
1), WRR or strict-priority scheduling is implemented in the
egress line-cards where traffic normally accumulates. Speedup
considerably increases the cost of all major parts of the
switch and severely limits the maximum line rate that can
be supported.

The combined-input-crosspoint-queueing (CICQ, or
buffered crossbar) architecture significantly simplifies
scheduling [6] [7] [8] [9]. The 2� N schedulers in CICQ
switches –N at the input and N at the output lines of
the crossbar–, work independently of each other, since
each of them deals with only a single resource. They are
still coordinated, but only over longer timescales, through
backpressure feedback from the crosspoint buffers. In

y The authors are also with the Dept. of Computer Science, University of
Crete, Heraklion, Crete, Greece.

��
��
��

��
��
��

�
�
�
�

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

���
���
���
���

��
��
��
��

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
��
��
��
��

������
������
������
������

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

��������
��������
��������
��������

��
��
��

��
��
��

��
��
��
��

��
��
��
��

= Scheduler

traffic on in0

traffic on out1

 time

traffic scenario
in crossbar

S

VOQs

out0

out0

out1

out0

out1

out1

out0

out1 in 0

in 1
 time

 time

 timetraffic on out0

S S

Input 0

Input 1

co
nf

ig
ur

e

in0 in1 in0 in1

out0

out1

egress linecards

Scheduler
Crossbar

Output 0 Output 1

 Crossbar

green: priority to output 0LOW
green: LOW priority to output 1

HIGH priority to output 0red:
red: priority to output 1HIGH

traffic on in1

request
grant

Fig. 1. The CIOQ switch with unbuffered crossbar

buffered crossbars, WRR and strict priority scheduling can
be implemented at each of the input and output crossbar
lines, without negatively affecting switch throughput [8];
thus no speedup is required to compensate for scheduling
inefficiencies. From the implementation point of view, an
advantage of buffered crossbars is that they do not require
clock or cell-time synchronization among the ingress lines
[10].

A related significant advantage of buffered crossbars is their
capacity to directly switch variable-size packets [6] [11]. Since
the 2� N schedulers in a buffered crossbar can operate asyn-
chronously, there is no global “time-frame”, that constraints
the system to transmit packets in fixed-size units (segments or
cells) –fig. 2. This does not hold for the unbuffered architec-
ture, where the centralized scheduling has only be shown to
operate efficiently when it manipulates fixed-size cells (fig. 1).
In turn, directly switching variable-size packets eliminates the
other reason for internal speedup i.e., to compensate for the
segmentation overhead when the packet size is not an integer
multiple of the segment size. It also removes the cost of large
memories and reassembly mechanisms in the egress line-cards.
Concerning power, variable size packets will generally reduce
consumption, since operations like scheduling and forwarding
configuration will be made on larger units (packets) and hence
less frequently. For a 32�32 crossbar that directly switches all
network packets of size up to 1500 bytes, 16Mbits of on-chip
memory are required (with 2 Kbyte memory per crosspoint). In
a companion paper [12], we demonstrate that this is typically

c� ICS-FORTH, SEP. 2003 1

feasible with current ASIC technology.
Multiple priorities are desirable to provide means for service

differentiation; e.g. IEEE 802.ID/Q defines eight classes of
service by means of priorities. Proper priority mapping, on
the application or packet level can provide efficient utilization
of network resources and increase the “user-perceived” utility
[14]. A CICQ switch supporting multiple priorities, requires
separate crosspoint buffers/queues (or lanes) per priority to
prevent HOL blocking and buffer hogging [11]. These effects
can make a high priority packet receive low-priority service
(sec. 2.2). However, each additional such queue incurs a
significant cost, hence we want to economize on their number.

This paper studies a buffered crossbar that directly switches
variable-size packets and supports multiple priorities while
economizing on the number of lanes per crosspoint. Section
2 presents our baseline architecture, regarding flow-control,
queuing, scheduling and buffer dimensioning. In section 3,
we propose a method, SQP, that resolves, in the short term,
HOL blocking and buffer hogging which occur when many
different priorities are multiplexed on a shared lane; even with
one queue per crosspoint, SQP prevents unjustified starva-
tion of high priority flows. Section 4 proposes an enhanced
version of SQP, 2B-ADAPT, that effectively supports mul-
tiple priorities with two lanes per crosspoint. In section 5
we show through simulation, that when eight priorities are
supported, even under highly irregular traffic, 2B-ADAPT
will not increase the average delay of the HIGHEST priority
level by more than 75 percent, when compared to a system
with a distinct lane per priority (i.e., four (4) times more
buffering); intermediate priorities experience much smaller
discrepancies. Under smoother patterns, like typical network
traffic or Poisson arrivals, we find that the two systems perform
almost identically. We also compare the multipriority variable-
packet-size buffered crossbar to a fixed-size-cell one and to
pure output queuing with per priority output queues. In section
5 we show that the only relatively complex functionality of our
methods is located in the ingress line-cards.

To the best of our knowledge, this is the first published
study of how to effectively map multiple priority levels onto
a reduced number of queues in a buffered crossbar –and
perhaps in any kind of switch in general. The importance of
the paper stems from this novelty and from the importance
of buffered crossbars –especially variable-packet-size ones–
as the probable emerging architecture of choice for future
commercial crossbar products.

2 . SYSTEM & METHODS

2.1. Baseline Architecture

The system we consider in this paper is a buffered crossbar
that directly switches variable-size packets (fig. 2). In order
to effectively support multiple priorities, separate virtual-
output-queues (VOQ) per priority are maintained at the input
line-cards. Credit-based flow-control is employed, to provide
lossless transmission at the link level between the input line-
cards and the buffers within the crossbar. Ideally, a separate
FIFO queue with distinct buffer space, is allocated for each

�������
�������
�������
�������

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
�� ���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

�����
�����
�����
�����

���
���
���
���

��
��
��
��

���������
���������
���������
���������

�������
�������
�������
�������

������
������
������
������

����
����
����
����

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

����
����
����
����

��
��
��
��

��
��
��
��
���
���
���
��� ���

���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���
���

�����
�����
�����
�����

�������
�������
�������
�������

��
��
��
�� out0

out1

out0

out1

out1

Buffered Crossbar

out1

out0

= Scheduler

traffic on in0

traffic on in1

traffic on out0

traffic on out1

 time

traffic scenario
in crossbar S

S

SS

S

in 0

Input 0

Input 1

VOQs

 time

 time

 time

Credit FIFO

in 1

Output 0 Output 1

Credit FIFO

LOW priority to output 0
priority to output 1

red: HIGH priority to output 0
red: HIGH priority to output 1

green:

out0

out1

out0

green:
LOW

Fig. 2. A CICQ switch with separate crosspoint lane per priority

priority at each crosspoint; we name this system multiple-
queue-distinct-buffer (in short, MQDB).

As we demonstrate in [12], each separate crosspoint FIFO
is placed in a dedicated address range of a dual-ported SRAM,
where it is implemented as a circular queue; we support cut-
though at the crosspoints. When a packet is selected for service
at the output, a credit informing about the packet departure is
generated inside the crossbar chip. Credits destined to the same
input are sent in FIFO order and the credit rate per input port
is set equal to one credit every minimum-packet-size (in short,
MnPS) time.

For the credit-based flow-control to operate correctly, the
size of each separate crosspoint FIFO, B, must be at least
equal to the maximum-packet-size (in short, MxPS) allowed
in the network. In order to sustain full output-link utilization
even when a single flow is active, B must be greater or equal
to MxSP + RTT� LR, where LR stands for the line rate and
RTT stands for the delay from the generation of a credit till
the first word of a packet, that utilized this credit at the input,
starts being transmitted on the output lines of the crossbar
[12].

The scheduling discipline assumed at the input and the
output links is a combination of non-preemptive, priority
scheduling and advanced Round-Robin (RR): when queues of
different priorities are eligible for service, the highest eligible
priority, l, is selected; if multiple queues with priority l are
eligible, we use RR to select one of them. Scheduling at a
link starts when a flow (i.e., a distinct input/output/priority-
level triplet) becomes eligible, if the link is currently idle, or
one scheduling delay before the current transfer ends [13].

2.2. HOL blocking & Buffer Hogging

Separate lanes per priority, at each crosspoint are desired
in order to provide flow isolation and protection. If a single
crosspoint queue, Q, is shared among multiple priorities –
single-queue switch (in short, SQ)– and low priority packets
have been enqueued in Q first, a higher priority packet that
is inserted after them can experience unacceptable long delay
until it becomes the head of Q; this phenomenon is known

c� ICS-FORTH, SEP. 2003 2

other outputs

other outputs

other outputs

S

����
����
����
����

��������

��������
����
����
����
��������
����
����
����

����

��������

��������
����
����
����
��������
����
����
����

��
��
��

��
��
��

��������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

������
������
������
������

��������

����
����
����
����

���
���
���

���
���
���

����

��
��
��
��

������������

��������

��
��
��
��

�
�
�

�
�
�

��������

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���
���
���

��
��
��
��

����������������

VOQs

Output 0

Output 0

Output 0

S

S

S

Output 0

S

HOGGING
BUFFER

BLOCKING

other outputs

other outputs

Output 0

S

with
Blue packets

by

SPECIAL PACKET

by

Output Scheduler

from all inputs ==>
now selects

no HOL, no Hogging

Output Scheduler
selects only
from input 0 ==>
starvation for
all flows from

,Green
with upgradedHOL

input 0 and 1

by

(red) output priority

(green) output
upgraded

priority

other outputs

credit to input 1

GREEN

ut
ili

ze
d

by

blocked
at input

VOQs

VOQs

Input 0

V
O

Q
s

other

Input 1

other
V

O
Q

s
other
V

O
Q

s

SQ SCHEME SQP SCHEME

packetsBlue

= strict priority, FQ
Scheduler

Input 2

(a) (b)
green: MEDIUM priority
red: HIGH priority

blue: LOW priority

Fig. 3. (a) HOL blocking & Buffer Hogging in a SQ switch (b) SQP

as Head Of Line (HOL) blocking –fig. 3(a). Even if multiple
(logical) queues, one for each priority, are maintained at each
crosspoint but these queues share a common buffer space –
multiple-queue-shared-buffer switch (in short, MQSB)– simi-
lar effects can occur if low priority packets have exhausted
the shared buffer space: higher priority packets, that are
ineligible for service at the input due to flow-control, will
have to wait until the low priority queues are served, so these
can experience a delay comparable to that of low priority
traffic; this effect is known as buffer hogging. Note that buffer
hogging can also appear in the SQ scheme, while MQSB by
definition prohibits HOL blocking.

Both HOL blocking and buffer hogging can have destructive
effects on the higher priorities. Even a flow in the HIGHEST
priority level, that normally receives preferential service, can
experience starvation, which is indirectly induced by conges-
tion of flows with intermediate priority –fig. 3(a).

An additional disadvantage of MQSB, is the control circuit,
that is required at each crosspoint in order to maintain the
logical queues. Besides the fragmentation that can occur if
variable size packets are to be stored inside the queues, this
scheme significantly increases the complexity of the already
heavily loaded crossbar chip. Instead, circular queues, imple-
mented in private buffer space, require much simpler control
(e.g. a head and a tail counter) and do not incur fragmentation.
A MQSB system, switching cells, is examined in [10].

2.3. Single Queue with Push-Forward

In the first scheme that we explore, like in SQ, all flows from
the same input that go to the same output share a single cross-
point queue. In order to resolve HOL blocking we employ the
following discipline at the crosspoints: the “effective priority”
of a crosspoint queue Q, for output scheduling purposes, is the
highest of the priorities of the packets currently enqueued in

it; in this way, Q drains with the priority of the most “urgent”
packet currently inside it. By doing that, low priority packets
at the HOL can no any longer cause starvation to high priority
packets behind them. We name this scheme single-queue-push-
forward (in short, SQP), see fig. 3(b).

To resolve buffer hogging, the input in SQP sends a special
packet to signal this priority upgrade, in lieu of the actual
packet which cannot be sent due to flow-control constraints.
Special packets are not stored in crosspoint queues, neither
they are forwarded to outputs, but they are subject to schedul-
ing at the input and are transmitted like normal packets,
through the same interface. Their size has been set equal to a
MnPS, so that the scheduling rate is not affected.

Consider now the case, where an input, i, has not yet
received credit from a crosspoint queue, Q, for a packet of
priority l�, higher than the highest eligible priority, l, in the
VOQs that correspond to Q.

This fact indicates probable heavy traffic at level l� or higher
in the crossbar. Under such conditions, if a priority l packet
is enqueued in Q, this will need to wait until all packets
in front of it are served and probably even more if output
congestion actually occurs; this increases the probability that
buffer hogging or HOL blocking will appear if a packet with
priority higher than l arrives later at input i for the same output.

So we performed the following optimization to SQP (SQP-
opt): when packets of priority l� or higher are still pending
(i.e., not yet acknowledged to the input by means of credits)
at a crosspoint queue, Q, the input is not allowed to send a
packet with priority lower than l� toward Q. Although SQP-
opt is not work-conserving, we show through simulations,
that compared to SQP, it significantly reduces the delay of
all high priorities, without considerably affecting the crossbar
utilization. Another advantage of SQP-opt is that it simplifies
the priority upgrade mechanism that must be implemented at
the crosspoints.

Although with the aforementioned methods persistent buffer
hogging and HOL blocking that may appear under worst-case
scenaria are resolved, this comes at the cost of occasionally
transmitting packets with higher priority than their specifi-
cation, which increases the load at higher priorities, hence,
potentially increases the average delay of high priorities.

2.4. Two Buffers with Adaptive Mapping

Our second method, 2-buffers-with-adaptive-mapping (in
short, 2B-ADAPT), uses SQP-opt ideas in a more sophisti-
cated way. We assume two separate buffer/queues (lanes) per
crosspoint;

UP stands for one of these lanes and DOWN stands for the
other. An algorithm, Alg-2B-ADAPT, running independently
at each input line-card, decides through which lane a packet
can make it to the output. Alg-2B-ADAPT should not be
confused with the input scheduler; essentially, Alg-2B-ADAPT
monitors whether a flow f is eligible for service: it returns UP
or DOWN when it finds f eligible –the packet at the HOL
of f ’s VOQ can then use the respective lane– and NONE
otherwise. The input scheduler, as described in sec 2.1, selects

c� ICS-FORTH, SEP. 2003 3

one of the eligible flows. Alg-2B-ADAPT is adaptive, since it
processes packets based on the run-time state of the two lanes
at the corresponding crosspoint.

The output scheduler in 2B-ADAPT considers all the non-
empty UP and DOWN queues in a column of the crossbar and
serves the one with the highest effective priority (l); when both
the UP and DOWN queues in a crosspoint have the effective
priority l, the scheduler selects UP. The main idea in 2B-
ADAPT is the following.

Consider all flows from a given input to a given output.
We try to use only the DOWN lane, but when multiple
priorities are active, we allocate the UP lane to the highest
priority among them. The packets of the other active flows,
either use DOWN, or are kept at the VOQs. For all flows of
priority l, lower than the HIGHEST supported, the algorithm is
conservative when it uses UP: we want to keep the UP queue
usually empty, so that a packet of priority higher than l, that
arrives later at the input, is able to go through UP without
experiencing the delay of traffic with priority l. Whenever
HOL blocking appears in any of the two queues, or buffer
hogging appears at UP, the mechanisms of SQP apply. Thus,
Alg-2B-ADAPT can also return SpUP, meaning that the flow
is eligible but only to send a special packet UP.

We assume the following data structures at each input, for
each output; the number of flows corresponding to this pair is
L, the number of priority levels. Two bits for each flow f , FQ
[f], indicating whether the most recently sent and still pending
packet of this flow was sent UP or DOWN, or NONE (if f has
no pending packet). Similarly, PackUP [f] counts the number
of f ’s pending UP packets; and TimeUP [f] keeps track of the
time that has elapsed since the input started transmitting the
oldest pending UP packet. Finally, two registers, EffPr [UP]
and EffPr [DOWN], estimate the “effective” output-priority of
UP and DOWN respectively, by keeping track of the highest
pending priority in the corresponding queue; when no packet is
pending UP or DOWN, the respective register equals NONE1.

Suppose that a packet p, from flow f with priority l, is
processed by Alg-2B-ADAPT. As fig. 4(a,b) shows, the HIGH-
EST supported priority, l= 0, is mapped only UP whereas,
the LOWEST, l= L��, is mapped only DOWN. Intermediate
priority levels can be mapped either UP or DOWN –fig. 4(c).

1) Justification and Alternative Policies: Like SQP-opt, 2B-
ADAPT never sends a packet to a queue where packets of
higher priority are pending. Regarding intermediate priorities,
when (a) FQ [f] equals NONE, i.e. f has no pending packet,
2B-ADAPT first tries to map p DOWN, but if it finds that
EffPr [DOWN] is lower than l, it tries to map it UP, to save
the delay of the packets pending DOWN. When (b) FQ [f]
equals DOWN, 2B-ADAPT will use only the DOWN lane; this
property, combined with the discipline at the output, ensures
in-order transmission of packets within a flow [13].

Finally, (c) when FQ [f] equals UP, p is found eligible (UP)

1When we compare priorities, the NONE value for EffPr [fUP,DOWNg]
translates either as HIGHEST, or as LOWEST –see fig. 4(d)

if (MaxDownEq[l] and DOWN[p]) return DOWN;
if (MaxDownHigher[l]) return NONE;

MaxDownLower[l]:= True iff EffPr[DOWN] lower l
MaxUpHigher[l]:=

MaxUpLower[l]:=
MaxDownEq[l]:= True iff EffPr[DOWN] equal l

EffPr[DOWN] equal NONE

similarly

similarly
OR

EffPr[DOWN] equal NONE

EffPr[DOWN] equal NONE
OR

OR

MaxUpEq[l]:= similarly
UP[p]:= True iff Credits[UP] >= p.size
DOWN[p]:= True iff Credits[DOWN] >= size

MaxDownHigher[l]:= True iff EffPr[DOWN] higher l

(d)

case UP:

switch (FQ[f])
case NONE:

case DOWN:
if (MaxDownHigher[l])

begin
if (MaxDownHigher[l]

if (L equals LOWEST)

(a)

(b)

endcase

endcase

 begin

else return NONE;
end

else if(UP[p]) return UP;

 else return NONE;

 if(DOWN[p] return DOWN;
 else return NONE;

return NONE;

if (L equals HIGHEST)
begin

if (UP[p]) return UP;
else if (MaxUpLower[l])

return NONE;
return DOWN;

if (not UP[p]) return NONE;

if (MaxDownEq[l] and DOWN[p])

(MaxUpLower[l] or MaxUpEq[l]))

if (MaxDownLower[l])
if(MaxUpHigher[l])

TD

MD

Kif ((PackUP[f] < or TimeUP[f] < RTT) and(i)
(ii)

return UP;

else
 if (DOWN[p])

(c)

 return NONE;
endcase

endswitch

 else

end

return SpUP;
else return NONE;

HIGHEST priority

LOWEST priorityINTERMEDIATE priorities

NOTATION

else if (MaxUpLower[l]) return SpUP;

end
else return NONE;

return DOWN;

return NONE;

return DOWN;
and DOWN[p])

Fig. 4. Alg-2B-ADAPT policy for: (a) LOWEST priority; (b) HIGHEST
priority; (c) Intermediate priorities. (d) Notation. (The lines in italics
correspond to alternatives policies and are not activated in 2B-ADAPT.)

only if (i) PacketUP [f] � K or TimeUP [f] � RTT; and (ii)
EffPr [UP] � l, i.e. no flow of priority l�, higher than l, is
using UP. We use criterion (i) in order to keep the UP queue
relatively empty, and (ii) to reserve the UP lane for level l � 2.
In 2B-ADAPT, K is set equal to one (1).

If we do not include the “TimeUP [f] � RTT” condition
in criterion (i), (policy 2B-ADAPT-noRTT –in short, noRTT)
then an intermediate priority flow, which uses the UP lane and
sends small packets, may not be able to reach full link rate.
For instance, if f sends MnPS packets and K is less than
RTT �LR

��MnPS
, then noRTT will bound f ’s rate to LR

� . The noRTT
policy limits the number of packets that are pending UP, and
thus, normally, reduces the delay of the higher priorities.

In either case when criteria (i) or (ii) fail, instead of blocking
p, we can try to send it DOWN (policy 2B-ADAPT-TD –in
short, TD) –see TD marker in fig. 4. Similarly to policy noRTT,
2B-ADAPT-TD has the potential to reduce the delay of the
higher priorities – remember that while FQ [f] equals DOWN,
f cannot use UP. However, the TD policy can be unjustifiably
rushy and aggressive if it causes packets that were queued
DOWN to be upgraded to priority l, because TD send p as
DOWN while criteria (i) or (ii) had failed:

Normally, the UP queue will drain before DOWN starts
receiving service 3; hence, before p reaches the HOL of
DOWN, (i) and (ii) will probably not fail any more. In this
case, p would be able to go through the UP lane with similar
or smaller delay and without upgrading any other packets.
Furthermore, the failure of either criterion indicates congestion
at level l or higher within the crossbar, that can delay p in spite

2We assume that a flow’s packet arrivals exhibit temporal locality
3EffPr [UP] (i.e. l

�, or l) will be normally higher or equal to EffPr [DOWN]
(i.e. at most l, after p is enqueued); this is the effort of the algorithm.

c� ICS-FORTH, SEP. 2003 4

of the priority upgrades. In this case, sending p DOWN can
also cause future buffer hogging or HOL blocking, if in the
meanwhile that p is queuing DOWN, packets of priority higher
to l appear at the input for the same output. Alg-2B-ADAPT
simply blocks p, until no packet is pending UP, when (ii) fails,
or until one credit for f is received, when only (i) fails.

Another policy that we examined activates the code lines
in fig. 4 marked MD. The medium-priority-down policy (or
2B-ADAPT-MD –in short, MD) maps a packet, p, DOWN
when (1) FQ [f] equals NONE, and (2) l is higher than
EffPr [DOWN] and lower than EffPr [UP]. 2B-ADAPT simply
blocks p in this case. Policy MD has similar advantages and
disadvantages with policy 2B-ADAPT-TD; through simula-
tions we observed that these alternatives can reduce the delay
of the HIGHEST priority, but at the expense of intermediate
priorities experiencing considerably higher delays.

3 . SIMULATIONS

We created an event-driven simulator to experiment with our
methods. In this paper, we simulate a 32�32 switch with port
speed 10 Gbps; for simplicity we assume no internal packet-
header and thus no speedup 4. The VOQs and the crosspoint
queues implement cut-through. The RTT is set equal to 400ns
(or 500byte time), resulting as the sum of the following delays:
(1) one propagation delay (or PD 5, 100ns) and one transfer
delay (equal to a MnPS time, 32ns), before a credit, c, reaches
the input; (2) one scheduling delay (or SD, 30ns) at the
input, plus one VOQs memory access delay (76ns) and one
PD, before a packet, p, that used c at the input, reaches the
crosspoint; last (3) one SD at the crossbar output, before p

starts being transmitted on the output lines of the crossbar
[13].

We explicitly model variable-size packet arrivals. Packets’
output destinations are uniformly distributed and all priorities
arrive with equal probability. We use Poisson, and Bursts60
packet arrivals with burst length sixty back-to-packet packets
and exponentially distributed idle periods (average burst size
23 Kbyte). The Bursts60 pattern models worst-case real traffic
scenarios. Packets within a burst have the same destination and
the same priority. The size of each packet is always selected
independently using a Pareto distribution: average-packet-size
(or AvPS) 400, MnPS 40 and MxPS 1500 (bytes). We plot
packets’ average delay just-before-output-service (or, equiv-
alently, packets’ waiting-time), for each priority in separate,
versus the aggregate input load; we present plots only for the
most interesting priority levels (p0 stands for the HIGHEST).

2) OQ vs MQDB: We start by comparing the MQDB
architecture, with 2 Kbyte buffer space per crosspoint queue,
to the pure output queuing system (OQ6). We also present
the performance of OQ, computed using the theory of non-
preemptive, priority scheduling, that can be found in [15].

4At 10Gbps pure payload link rate, a 64Byte cell-time equals 0.0512 usec
5PD includes time-of-flight on the interconnect between the crossbar-chip

and the input line-cards, plus interfacing and pipeline delays within the chips.
6In the OQ model, the output queues, which are are organized per input

and per priority, have infinite size and the minimum delay of a packet isRTT
�

0.5

1

2

4

8

16

32

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
E

LA
Y

 (
us

ec
)

LOAD

"non-Preempt-MG1_p:0"
"OQ_p:0"
"MQDB_p:0"
"non-Preempt-MG1_p:1"
"OQ_p:1"
"MQDB_p:1"
"non-Preempt-MG1_p:2"
"OQ_p:2"
"MQDB_p:2"
"non-Preempt-MG1_p:3"
"OQ_p:3"
"MQDB_p:3"

Fig. 5. 4 priority levels (p0 HIGHEST), Poisson arrivals. Y axis in logscale.

This theory, for Poisson arrivals, shows that the average
delay of priority level l, Dl, depends primarily on the load of
levels l�, higher or equal to l. Dl loosely relates to the load
(rm) of a lower level, m, through the delay that a priority l

packet, which just became eligible, can experience due to an
ongoing transfer of a packet with priority m. Applying the
respective formulas in [15] for the OQ system and for the
Pareto packets’ size distribution that we use, we find that:

Dl �
��������

P
l

l���
rl��
P

L

m�l��
rm�

���
P

l

l���
���rl�������

P
l��

l���
���rl� ��

usec.

As diagram 5 shows, the analytical model perfectly matches
the simulated OQ system. It also shows that at input loads
up to 0.94, MQDB performs identically to OQ. At higher
loads, small discrepancies occur, that are more prominent for
the higher priorities; these can be attributed to the two non-
preemptive schedulers that each packet has to pass in MQDB,
and to small inefficiencies of MQDB (input-queuing vs OQ).

3) MQDB vs Shared Buffer/Queue: Here, we examine the
performance of MQSB, SQ, SQP and SQP-opt, all with
crosspoint buffer space equal to 2 Kbyte. To model MQSB
(see sec. 2.2), we use a single credit counter at each input for
each corresponding crosspoint, that counts for the available
space (2 Kbyte) of all logical queues in that crosspoint. In an
actual MQSB system, memory fragmentation could worsen
performance.

In diagram 6 we compare MQDB, MQSB, SQ and SQP-opt
under Poisson arrivals; we see that at 0.81 input load, SQP-
opt and MQSB perform close to MQDB while SQ cannot
discriminate well low from high priority traffic: this is due
to HOL blocking. With increasing load, all systems except
MQDB downgrade similarly with SQ; in SQP-opt this happens
at lower load than in MQSB, but MQSB downgrades more
sharply at higher loads (i.e. near 0.97): this is due to buffer
hogging. Our results in [13] indicate, that under this scenario,
SQP-opt assigns lower delay to levels fp0, p1, p2g compared
to SQP (f5, 8, 20g and f8, 12, 25g usec respectively, at 0.99
load), while p3 receives almost the same service.

In diagram 7, where we compare MQDB, MQSB, SQP-opt

c� ICS-FORTH, SEP. 2003 5

0.5

1

2

4

8

16

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"MQSB_p:0"
"SQP-opt_p:0"
"SQ_p:0"
"MQDB_p:1"
"MQSB_p:1"
"SQP-opt_p:1"
"SQ_p:1"
"MQDB_p:2"
"MQSB_p:2"
"SQP-opt_p:2"
"SQ_p:2"

Fig. 6. 4 priority levels (p0 HIGHEST), Poisson arrivals. Y axis in logscale.

0

10

20

30

40

50

60

70

80

0.7 0.75 0.8 0.85 0.9 0.95 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"MQSB_p:0"
"SQP-opt_p:0"
"SQP_p:0"
"MQDB_p:1"
"MQSB_p:1"
"SQP-opt_p:1"
"SQP_p:1"
"MQDB_p:2"
"MQSB_p:2"
"SQP-opt_p:2"
"SQP_p:2"

Fig. 7. 4 priority levels (p0 HIGHEST), Bursts60 arrivals.

and SQP under Bursts60 arrivals, performance degradation in
all shared-memory systems is more evident and the superiority
of SQP-opt compared to SQP is apparent. At low load (i.e. 0.5
to 0.7), MQSB performs better than SQP and SQP-opt since
it employs multiple queues that eliminate HOL blocking, and
buffer hogging is not harmful when the crosspoints’ buffers
are relative empty; it performs much worse though, at higher
input load, where the crosspoint buffers fill more frequently.

4) MQDB vs 2B-ADAPT: Following, we examine the per-
formance of 2B-ADAPT, with 2 Kbyte buffer space assigned
to each crosspoint queue. With four priority levels we found,
that under Poisson arrivals 2B-ADAPT performs identically
to MQDB, while, under Bursts60 arrivals, small discrepancies
occur at loads higher than 0.8; these discrepancies grow with
increasing load, but in our results never exceed 50%, that
appears at p0’s average delay (18 vs 12 usec, at 0.99 load)
[13].

Diagr. 8 is for eight (8) priorities and Poisson arrivals. It
compares 2B-ADAPT to MQDB and to 2B-ADAPT-K2 (in
short, K2), i.e. an alternative policy that sets K in criterion (i)
equal to two (sec. 2.4.1). The diagram shows that 2B-ADAPT
and K2 perform similarly under this scenario. Compared to

0.5

1

2

4

8

16

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"2BADAPT_p:0"
"2BADAPT_K=2_p:0"
"MQDB_p:1"
"2BADAPT_p:1"
"2BADAPT_K=2_p:1"
"MQDB_p:2"
"2BADAPT_p:2"
"2BADAPT_K=2_p:2"
"MQDB_p:4"
"2BADAPT_p:4"
"2BADAPT_K=2_p:4"
"MQDB_p:6"
"2BADAPT_p:6"
"2BADAPT_K=2_p:6"

Fig. 8. 8 priority levels (p0 HIGHEST), Poisson arrivals. Y axis in logscale.
2B-ADAPT-K2 plots start at 0.8 load.

5

10

20

30

40

50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"2BADAPT_p:0"
"2BADAPT_noRTT_p:0"
"MQDB_p:1"
"2BADAPT_p:1"
"2BADAPT_noRTT_p:1"
"MQDB_p:2"
"2BADAPT_p:2"
"2BADAPT_noRTT_p:2"
"MQDB_p:3"
"2BADAPT_p:3"
"2BADAPT_noRTT_p:3"
"MQDB_p:5"
"2BADAPT_p:5"
"2BADAPT_noRTT_p:5"

Fig. 9. 8 priority levels (p0 HIGHEST), Bursts60 arrivals. 2B-ADAPT-
noRTT plot starts at 0.8 load

MQDB, 2B-ADAPT exhibits negligible discrepancies that are
observable only at input load higher than 0.85. The maximum
discrepancy, under all priorities, is near 15% (p0’s average
delay, 0.8 vs 0.7 usec, at 0.99 load). For Bursts60 arrivals, our
results in [13] show, that 2B-ADAPT assigns smaller average
delay, when compared to K2, to all priority levels except p7.

Diagr. 9 compares 2B-ADAPT to MQDB and to 2B-
ADAPT-noRTT, under eight priorities and Bursts60 arrivals;
it shows that the noRTT policy reduces the delay of all high
priorities. Compared to MQDB, the maximum discrepancies
occur at the average delay of priority p0: 75% and 35% in 2B-
ADAPT and in noRTT respectivelly, at 0.99 load. Regarding
lower priority levels, the corresponding discrepancies are con-
siderably smaller (less than 33%). A noteworthy point, relative
to sec. 2.4.1, is that in the average case, the noRTT policy will
not bound flows’ rate, if K� AvPS � RTT� LR.

Next we use a synthetic traffic pattern, SynthBackb, that
tries to emulate as much as possible backbone, realistic IP
traffic. In synopsy, under the SynthBackb pattern, the packet
arrivals at an input line-card are generated by multiplexing
thousands of interactive (IC) and bulk (BC) “conversations”

c� ICS-FORTH, SEP. 2003 6

0.5

1

2

4

8

16

32

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"2BADAPT_p:0"
"2BADAPT_TD_p:0"
"MQDB_p:1"
"2BADAPT_p:1"
"2BADAPT_TD_p:1"
"MQDB_p:2"
"2BADAPT_p:2"
"2BADAPT_TD_p:2"
"MQDB_p:4"
"2BADAPT_p:4"
"2BADAPT_TD_p:4"
"MQDB_p:5"
"2BADAPT_p:5"
"2BADAPT_TD_p:5"

Fig. 10. 8 priority levels (p0 HIGHEST), SynthBackb arrivals. Y axis in
logscale.

in a FIFO queue; an IC is modeled as a Poisson process that
sends 125 packets with size 40 to 44 bytes, while BC as a burst
with average size 8 Kbyte [12]. Diagr. 10 contains plots for
MQDB, 2B-ADAPT and 2B-ADAPT-TD under SynthBackb
arrivals and eight priority levels; each generated conversation
is independently mapped to one level, using a uniform distri-
bution. The diagram shows 2B-ADAPT to perform very close
to MQDB. The TD alternative policy performs very poorly for
the reasons described in sec. 2.4.1: compared to 2B-ADAPT,
TD dramatically increases the delay of all priorities except
p7. Under Bursts60 and Poisson arrivals, we found that 2B-
ADAPT-TD performs better than 2B-ADAPT regarding p0 and
p7, and worse for all other priorities [13].

5) Packets vs Cells: Diagr. 11 compares MQDB with a
similar cell system, FX-XBAR. FX-XBAR segments packets
in the ingress and reassemblies in the egress line-cards. In the
FX-XBAR model, we assumed 64 byte cells, buffer size per
crosspoint queue equal to RTT�IR (IR stands for the internal
line rate), and we used speedup factors 1.0, 1.2 and 1.6�;
the scheduling delay is set equal to one cell time (or CT,
64byte/IR) and the credit rate per input port equal to one credit
every CT.

As the diagram shows, FX-XBAR-1.0� saturates near 0.9
load, where all priorities perform purely. In FX-XBAR-1.6�,
the average delay of p0 is not affected by the load, but is higher
than in MQDB: by constrast with MQDB, in the FX-XBAR
the delay of a p0 packet, p, includes one transmission delay
of p toward reassembly. Normally, non-preemptive scheduling
has lesser impact with cell switching: a high priority flow
that now becomes eligible at the input or the crossbar-output
scheduler, cannot not be delayed by more than one CT, due to
an ongoing lower priority transfer. This does not hold in the
egress line-cards, where the reassembled packets are served
non-preemptively. Finally observe that by measuring packets’
waiting-time, we favored FX-XBAR: if two packets arrive at
time t from different inputs in an idle FX-XBAR, the smaller
one will be reassembled firsts, due to smaller transmission
delay, and thus will be served first; it is known that a smaller-

0.5

1

2

4

8

0.7 0.75 0.8 0.85 0.9 0.95 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"FX_XBAR-1.6_p:0"
"FX_XBAR-1.2_p:0"
"FX_XBAR-1.0_p:0"
"MQDB_p:1"
"FX_XBAR-1.6_p:1"
"FX_XBAR-1.2_p:1"
"FX_XBAR-1.0_p:1"
"MQDB_p:2"
"FX_XBAR-1.6_p:2"
"FX_XBAR-1.2_p:2"
"FX_XBAR-1.0_p:2"

Fig. 11. 4 priority levels (p0 HIGHEST), Poisson arrivals. Y axis in logscale.

packet-first server reduces packets’ average waiting time.

HARDWARE COST

The SQP and 2B-ADAPT methods, require circuits inside
the crossbar only to calculate queues’ effective priority. If
the inputs do no sent priority l packets, toward a queue Q
with effective priority higher than l, like in SQP-opt and 2B-
ADAPT, then one register maintaining the highest priority,
under all packets currently inside Q, suffices. If this does not
hold, like in SQP, then a FIFO per crosspoint is required.
Regarding the complexity of Alg-2B-ADAPT, note that it is
structured by a switch-statement and few number of compar-
isons between small values. At a packet arrival or departure,
Alg-2B-ADAPT has to “run” for a single flow; at a credit, c,
arrival, it must compute the eligibility of L flows, i.e. those
that can utilize c. Currently, while we are designing Alg-2B-
ADAPT in ASIC, we investigate architectural methods that
eliminate this intricacy.

CONCLUSIONS

We presented a novel multiple priority CICQ switch, with
very good performance, that employs a minimal number of
lanes at each crosspoint, i.e. one or two. Our results indicate,
that implementing more than two crosspoint lanes does not
worth the associated, high incremental cost, since our system
with two such lanes performs very close to the ideal system,
which employs a separate crosspoint lane for each priority: un-
der a worst case scenarion the maximum relative discrepancy
is 75% whereas, in the typical case it is only 15%. Finally,
we demonstrated that the only considerable, additional cost of
our system is located in the ingress line-cards.

REFERENCES

[1] T. Anderson, S. Owicki, J. Saxe, C. Thacker: “High-Speed Switch
Scheduling for Local-Area Networks”, ACM Trans. on Computer Sys-
tems, vol. 11, no. 4, Nov. 1993, pp. 319-352.

[2] R. LaMaire, D. Serpanos: “Two-Dimensional Round-Robin Schedulers
for Packet Switches with Multiple Input Queues”, IEEE/ACM Trans. on
Networking, vol. 2, no. 5, Oct. 1994, pp. 471-482.

c� ICS-FORTH, SEP. 2003 7

[3] N. McKeown: “The iSLIP Scheduling Algorithm for Input-Queued
Switches”, IEEE/ACM Trans. on Networking, vol. 7, no. 2, April 1999,
pp. 188-201;

[4] N. Ni, L. N. Bhuyan: “Fair scheduling for Input Buffered Switches”,
citeseer.nj.nec.com/482342.html

[5] P. Krishna, N. Patel, A. Charny, R. Simcoe: “On the Speedup Required
for Work-Conserving Crossbar Switches”, IEEE J. Sel. Areas in Com-
munications, vol. 17, no. 6, June 1999, pp. 1057-1066.

[6] D. Stephens, H. Zhang: “Implementing Distributed Packet Fair Queueing
in a scalable switch architecture”, Proc. INFOCOM’98 Conf., San
Francisco, CA, March 1998, pp. 282-290.

[7] R. Rojas-Cessa, E. Oki, and H. Jonathan Chao: “CIXOB-k: Combined
Input-Crosspoint-Output Buffered Switch”, Proc. IEEE GLOBECOM,
2001, vol. 4, pp. 2654-2660.

[8] N. Chrysos, M. Katevenis: “Weighted Fairness in Buffered Crossbar
Scheduling”, Proc. IEEE Workshop High Perf. Switching & Rout-
ing (HPSR 2003), Torino, Italy, June 2003, pp. 17-22; http://archvlsi
.ics.forth.gr/bufxbar/

[9] G. Georgakopoulos: “Few buffers suffice: Explaining why and how
crossbars with weighted fair queuing converge to weighted max-min
fairness”, http://archvlsi.ics.forth.gr/bufxbar/

[10] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis: “A Four-
Terabit Packet Switch Supporting Long Round-Trip Times”, IEEE Micro
Magazine, vol. 23, no. 1, Jan./Feb. 2003, pp. 10-24.

[11] K. Yoshigoe, K. Christensen: “A Parallel-Polled Virtual Output Queued
Switch with a Buffered Crossbar”, Proc. IEEE Workshop High Perf.
Switching & Routing 2001, Dallas, TX, USA, May 2001, pp. 271-275;
http://www.csee.usf.edu/�christen/hpsr01.pdf

[12] Manolis Katevenis, Giorgos Passas, Dimitris Simos, Giannhs Papaef-
stathiou and Nikos Chrysos “Variable Packet Size Buffered Crossbar
(CICQ) Switches” http://archvlsi.ics.forth.gr/bufxbar

[13] Nikos Chrysos: “Design Issues of a Multiple-Priority, Variable-Size-
Packet Buffered Crossbar” Technical Report, ICS FORTH Hellas, De-
partment of Computer Science, University of Crete, October 2004;
http://archvlsi.ics.forth.gr/bufxbar

[14] Wu-chang Feng et. al. “Adaptive Packet Marking for Providing Differen-
tiated Services in the Internet”, Proc. of Int. Conf. on Network Protocols
Oct. 1998;

[15] L. Kleinrock, “Queueing Systems, vol. 2”, Wiley, New York, 1975

c� ICS-FORTH, SEP. 2003 8

