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Buffered crossbars provide several advantages over unbuffered ones; one of them is that they can
directly switch variable-size packets. The first part of this report considers several issues that arise when
designing a variable-packet-size buffered crossbar with considerable Round-Trip Time: (1) we observe
that an acknowledgment semantics for credits reduces the backpressure communication overhead and the
storage of credits within the crossbar chip; (2) we show that cut-through can be implemented at the
crosspoints and we discuss for a reasonable crosspoint buffer size under cut-through and store&forward;
(3) we present a novel architecture for scheduling the operations at the contention points. The second
part is concerned with the crosspoint queuing organization when handling multiple priorities. In buffered
crossbars, separate buffers/queues (or lanes) per priority at each crosspoint are required to prevent HOL
blocking and buffer hogging. In this report we propose a buffered crossbar that effectively supports
multiple priorities with only two such lanes per crosspoint, even with no internal speed-up. Our method
maps packets to crosspoint lanes using adaptive criteria, and dynamically changes the effective priority
of crosspoint queues. Through simulations we show that when eight priorities are supported, under a
typical, uniform traffic pattern, our method will not increase the average delay of any priority by more
than 15 percent, compared to the aforementioned ideal system, that requires 4 times more buffering. Even
under a highly irregular traffic pattern, the respective discrepancy is bellow 75 percent. Under a non-
uniform/imbalanced traffic pattern, the lower priority levels have considerably increased average delay,
but this is due to inefficiencies of the round-robin scheduling that we currently employ, and is also related
to crosspoint buffers dimensioning; it is not a matter of priority handling. We also compare variable-size-
packet buffered crossbars to fixed-cell ones; through simulations we verify that the latter need significant
speed-up to reach the formers’ performance. Finally, we discuss the complexity of our methods, and we
show that it only affects the ingress line-cards.
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Abstract— Buffered crossbars provide several advantages over
unbuffered ones; one of them is that they can directly switch
variable-size packets. The first part of this report considers
several issues that arise when designing a variable-packet-size
buffered crossbar with considerable Round-Trip Time: (1) we
observe that an acknowledgment semantics for credits reduces the
backpressure communication overhead and the storage of credits
within the crossbar chip; (2) we show that cut-through can be
implemented at the crosspoints and we discuss for a reasonable
crosspoint buffer size under cut-through and store&forward; (3)
we present a novel architecture for scheduling the operations
at the contention points. The second part is concerned with the
crosspoint queuing organization when handling multiple prior-
ities. In buffered crossbars, separate buffers/queues (or lanes)
per priority at each crosspoint are required to prevent HOL
blocking and buffer hogging. In this report we propose a buffered
crossbar that effectively supports multiple priorities with only two
such lanes per crosspoint, even with no internal speed-up. Our
method maps packets to crosspoint lanes using adaptive criteria,
and dynamically changes the effective priority of crosspoint
queues. Through simulations we show that when eight priorities
are supported, under a typical, uniform traffic pattern, our
method will not increase the average delay of any priority by
more than 15 percent, compared to the aforementioned ideal
system, that requires 4 times more buffering. Even under a highly
irregular traffic pattern, the respective discrepancy is bellow 75
percent. Under a non-uniform/imbalanced traffic pattern, the
lower priority levels have considerably increased average delay,
but this is due to inefficiencies of the round-robin scheduling
that we currently employ, and is also related to crosspoint
buffers dimensioning; it is not a matter of priority handling. We
also compare variable-size-packet buffered crossbars to fixed-
cell ones; through simulations we verify that the latter need
significant speed-up to reach the formers’ performance. Finally,
we discuss the complexity of our methods, and we show that it
only affects the ingress line-cards.

1 . INTRODUCTION

Switches with an increasing number of faster ports are
needed to compensate for the ever increasing demand for net-
work bandwidth. At the same time, mechanisms are sought for
higher sophistication in quality of service (QoS) guarantees.
The crossbar is the simplest and most popular organization for
high performance (internally non-blocking) switches. It is the
architecture of choice for up to several tens of ports, although
for higher port counts, N, the growth rate of the crossbar
cost, O (N�), makes alternative topologies more attractive. The
crossbar is also, commonly, the building block for switching
fabrics with higher port counts.
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Fig. 1. The CIOQ switch with unbuffered crossbar

1.1. Unbuffered Crossbars

The crossbar scheduling problem, inherent in all unbuffered
crossbar architectures, consists of selecting a conflict-free
match (i.e., a full or partial permutation) of inputs to outputs.
This match, which is normally computed in every time-slot
(i.e., cell-time), can only be found in a centralized fashion,
since when one input selects some output no other input is
allowed to select the same output, and vice versa.

1) WRR Scheduling: Existing, practical crossbar sched-
ulers ( [1] [2] [3] [4]) cannot simultaneously support high
crossbar-utilization and sophisticated Quality of Service, e.g.
multiple priority levels or weighted round-robin (WRR)
scheduling: when some connections are preferentially selected
over others, multiple iterations are required to produce near
maximal matches [5].

For instance, if we replace the round-robin (RR) arbiters in
the iSLIP architecture by WRR arbiters, then, the matching
algorithm will normally need multiple iterations to produce
large matches. Under RR, the iSLIP algorithm guarantees that
when the switch is flooded, a full match at time-slot t will be
followed by a different full match at time-slot t��, even with a
single iteration of the algorithm: when the switch is flooded, all
virtual-output-queues (or VOQs) become persistent and thus,
all inputs request all outputs in the first phase of the iSLIP
algorithm; if during time-slot t, the N output arbiters grant N
different inputs (i.e., full match at time slot t), they will also
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grant N different input at time-slot t � �. (Given that the N
round-robin arbiters use a common ordering of inputs when
they perform round-robin.)

By contrast, the N “next-to-grant” pointers of the WRR
output arbiters in the hypothetical WRR-iSLIP switch, will
not necessarily move to positions that correspond to different
inputs at time slot t��, even if the match at the previous time-
slot was full. For example, some WRR output arbiters may
grant the same input in consecutive time-slots only because the
corresponding edge has large weight, and consequently, it is
possible that an input receives grands from multiple outputs at
time-slot t��. Thus, if this hypothetical switch employs only
one iteration for producing matches, the crossbar utilization
can be poor1 [3]. This is one of the reasons explaining why
practical crossbar schedulers either ignore QoS issues, or
provide only RR scheduling, sometimes coupled with a pair
of priority levels.

2) Speed-Up: The solution commonly used today is to
provide significant internal speed-up, i.e., combined-input-
output queuing, or CIOQ (fig. 1): the crossbar port rate is
higher than line rate by a factor of f , considerably greater than
one (e.g. two to three) [6]. In this way, (a) imperfect crossbar
scheduling is acceptable, since an average utilization of ��f
for the crossbar outputs suffices for the egress lines to get fully
utilized; (b) we can accommodate the rate increase that occurs
when variable-size packets are segmented into fixed-size cells;
and (c) the emphasis for QoS enforcement is shifted to the
egress-line sub-system, since queues now tend to build up on
the output side of the crossbar. Using the latter property, one
can implement e.g. WRR or priority scheduling on the output
queues, although, for traffic overloads higher than f , queues
also build up on the input side, where crossbar schedulers
cannot typically implement sophisticated disciplines.

3) Cost of Speed-Up: While internal speed-up is a good
solution, it does incur significant cost: (1) the crossbar is more
expensive since it must provide f times higher throughput, (2)
the central-scheduler must run f times faster, (3) the buffer
memories must provide ���f��� times higher throughput, (4)
and the number of buffer memories is doubled, since besides
input queues, output queues are needed as well. (Note that
output queues are also needed for cell-to-packet reassembly,
and for sub-port demultiplexing, when provided.).

Concerning power, the peak consumption is significantly
increased when speed-up is deployed, since most of the parts
of the switch run at a higher frequency. Particularly, consider
that the crossbar chip power consumption is often the limiting
factor for the aggregate line rate that can supported by the
system, and power consumption translates directly into (mostly
I/O pins) throughput; I/O throughput increases linearly with
speed-up. Thus, a router that uses a speed-up of two usually
ends up providing only half of the aggregate line rate that
it could otherwise offer. In overall, speed-up considerably
increases the cost of all major parts of the switch and severely
limits the maximum line rate that can be supported.

1A similar problem of buffered crossbars is presented in section 3.2
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level, i.e., the MQDB queuing organization –see section 4.1.1

1.2. Buffered Crossbars

An alternative solution, with the potential to yield both
faster and less expensive switches, is to use buffered crossbars.
The combined-input-crosspoint-queuing (CICQ, or buffered
crossbar) architecture significantly simplifies scheduling [7]
[8] [9] [10] [11]: the 2�N schedulers in CICQ switches –
N at the input and N at the output lines of the crossbar–
schedule collectively the traffic through the crossbar, but still,
these work independently of each other since each of them
deals with only a single resource. They are coordinated in
longer timescales (i.e., a few to a few tens of time-slots),
through the backpressure feedback from the crosspoint buffers.
In buffered crossbars, WRR and strict priority scheduling
can be implemented at each input and output contention
point, without negatively affecting switch throughput [10];
thus no speed-up is required to compensate for scheduling
inefficiencies.

1) WRR Scheduling: For instance, in [10] [11] [12] we
demonstrate that a buffered crossbar with VOQs and no
internal speed-up, which employs WFQ schedulers at the input
and the crossbar-output lines, distributes bandwidth to flows
–for the moment, consider them as distinct input/output pairs–
, in a way that closely approximates the Weighted Max-Min
(WMM) Fair allocation. Although WMM fairness does not
always ascertains full line utilization, we observed that it
does so in the common case when the weights of the flows
are selected randomly. But even when a line is underutilized
under WMM fairness, this happens by limiting the rate of
some flows, which otherwise, would “steal” rate from equally
congested flows.

We studied this behavior under persistent VOQ sources
(i.e., either constantly full or constantly empty VOQs), under
various distributions for the weights of the flows and under
different buffer space at the crosspoints; using extensive sim-
ulations on a 32�32 cell-discrete system, we found that with
3-8 cells per crosspoint queue, the worst-case discrepancy to
the WMM fair rates falls down to 5% while the average
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discrepancy is less than 1%. Note that there exist traffic
arrival scenarios where the WFQ buffered crossbar does not
stabilize very close to the WMM fair rates, unless large
crosspoint buffers are employed –see for instance, arrivals with
imbalanced destinations in [9].

Using a fluid model, we show in [12] that the time it takes to
the WFQ buffered crossbar to convergence to WMM fairness
is usually small; the worst-case stabilization delay after a
change in the weight of some flow, or after a change in some
VOQ (meaning the transition from empty to non-empty, or
vice-versa), is proportional to the size of the crosspoint buffers,
proportional to N, and inversely proportional to the magnitude
of the change in bandwidth allocation.

2) Buffers Costs: Of-course, the major cost of buffered
crossbars is that N� additional buffers are needed, one at each
crosspoint. The minimum amount of buffering per separate
crosspoint queue, required for good performance in a buffered
crossbar operating on cells, is RTT�IR, where RTT stands for
the Round-Trip time and IR stands for the internal line rate,
i.e., speed-up times the line rate [13]; additional buffer space
improves performance [10] [11].

By dedicating 100 mm� of a 0.13 �m ASIC to SRAM, 40
Mbits of buffer memory will become available, i.e., at 2.5 �m �

per bit [14]. This suffices for a ����� buffered crossbar with
four priority levels, employing a separate 1 KByte crosspoint
buffer/queue for each priority level. This buffer space at each
crosspoint queue is two times the RTT�IR, with RTT near
400ns (i.e., � 20 meters), port rate 10 Gb/s and speed-up
equal to 1.6�; this speed-up might be necessary if the sys-
tem operates in a variable-packet-size network to compensate
primarily for the segmentation overhead. A multiple chip
implementation of a 64�64, fixed-size cell, buffered crossbar
with speed-up 1.6�, supporting 40 Gb/s per port and large
RTT is presented in [15].

3) Implementation Advantages: From the implementation
point of view, an advantage of buffered crossbars is that they
do not require clock or cell-time synchronization among the
ingress lines. In an unbuffered crossbar, central arbitration at
each cell time implies that the cells entering the crossbar chip
through links operating in different clock domains have to
be synchronized before being switched on the crossbar-output
links, so that output conflicts do not occur due to discrepancies
among the different clocks; normally, this requires to deploy
elastic buffers at the input-side of the crossbar chip.

Instead, in the buffered crossbar architecture, output con-
tention is resolved in the crosspoint queues which can operate
asynchronously of each other; hence, no synchronization is
required among the ingress and the cells entering the crossbar
chip have to be synchronized only with the clock domain of
their corresponding output link, before the output scheduler
can considered them as eligible and transmit them on the
output link. As we demonstrate in [16], this synchronization
can be supported efficiently at the crosspoint buffers, if the
latter are implemented by dual-ported SRAMs. Thus we
eliminate the need of the elastic buffers. The only control
that we synchronize with the clock of the output link is a

new-packet signal, which notifies the output scheduler for the
arrival of a new packet at a crosspoint queue.

Observe that the distributed architecture of a buffered
crossbar, and the independent/asynchronous operation of the
parts that compromise it, also enhance fault-tolerance and
substitutability. While the market demand shifts from switches
of multi-Gb/s to multi-Tb/s aggregate capacity, the require-
ment for distributed and asynchronous operation becomes even
more pervasive since the new generation switches are built
over multiple racks, which, for cooling purposes, are placed
in an area of a few to a few tens of square meters [15].
Under these circumstances, it is extremely difficult to apply
synchronization and close coordination among the system’s
parts as required in unbuffered crossbars.

1.3. Variable-Packet-Size Buffered Crossbars

A related, significant advantage of buffered crossbars is their
capacity to directly switch variable-size packets [7] [17]. Since
the ��N schedulers in a buffered crossbar can operate asyn-
chronously, there is no global “time-frame”, that constrains
the system to transmit packets in fixed-size units (segments
or cells) –fig. 2. This does not hold for the unbuffered
architecture, where the centralized scheduling has only be
shown to operate efficiently when it manipulates fixed-size
cells –fig. 1.

In turn, directly switching variable-size packets eliminates
the other reason for internal speed-up, i.e., to compensate for
the segmentation overhead when the packet size is not an
integer multiple of the segment size. It also removes the cost
of large memories and reassembly mechanisms in the egress
line-cards. Speed-up and buffering are major contributors to
cost, hence variable-packet-size buffered crossbars have the
potential of significantly lowering the cost of packet switches
and routers. Concerning power, variable size packets will
generally reduce average consumption, since operations like
scheduling and forwarding configuration will be made on
larger units (packets) and hence less frequently.

The challenge is that if each crosspoint buffer/queue has
the capacity of one maximum-packet-size (or MxPS in short),
output buffers can be eliminated, thus reducing the overall
cost of the switch even more. In [16], we demonstrate that a
�� � �� buffered crossbar supporting all network packets of
size up to 1500 bytes is typically feasible with current ASIC
technology, even within a single chip (with 2 KBytes buffer
space per crosspoint).

1.4. Multiple Priority Levels

Multiple priorities are desirable to provide means for service
differentiation; e.g. IEEE 802.ID/Q defines eight classes of
service by means of priorities. Proper priority mapping, on the
application or the packet level, can provide efficient utilization
of network resources and increase the “user-perceived” utility
[18] [19]. For instance, the HIGHEST priority level can be
used for network-control packets, other, relatively high inter-
mediate priority levels can be used for highly-interactive low-
rate applications like TELNET, and lower intermediate levels
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for policed/bounded rate sources, like streaming/multimedia
applications; delay insensitive applications, like FTP or mail,
can use the LOWEST priority level.

1) Adaptive Priority Mapping: An even more sophisticated
approach is to dynamically map “critical” packets, like TCP
connection establishment or acknowledgment packets, to the
highest priority levels, and to use the remaining levels for
less “critical” packets [18]. An interesting approach is also
presented in [19]; this study shows that if the nodes of the
network are priority-aware, dynamic/adaptive priority mapping
performed on the packet level can be used to sustain the rate of
a flow above a minimum, without requiring explicit admission
control.

The models in [18] and [19] assume that the network’s
nodes take into account the priority of the packets’ only
regarding queuing, i.e., RED dropping policies. It becomes
evident though, that if the schedulers at the nodes of the
network are also priority-aware, similar or even better results
will be obtained. Much of the work in this report was inspired
by these papers.

2) Multiple Priorities in CICQ Switches: A CICQ switch
supporting multiple priority levels, normally requires separate
crosspoint buffers/queues (or lanes) per priority to prevent
HOL blocking and buffer hogging; these effects can make
a high-priority packet receive low-priority service (see sec-
tion 4.2 ). However, each additional such queue incurs a
significant cost, hence we want to economize on their number.

With 32 Mbits of on-chip memory, we can construct in a
single chip, a variable-packet-size buffered crossbar with no
output buffers in the egress line-cards, that supports effectively
two priority levels by employing a separate crosspoint lane
per priority –assuming packets of size up to 1500 bytes and
2 KByte buffer space per crosspoint queue. By increasing
the number of priority levels, L, that we want to support
beyond two, the memory required inside the crossbar chip
easily becomes unfordable; e.g. 64 Mbit for L � � and N =
32.

1.5. Contents

This report studies a buffered crossbar that directly switches
variable-size packets and supports multiple priorities while
economizing on the number of lanes per crosspoint. Section
2 pictures previous work on buffered crossbars and multiple
priorities. Section 3 presents our baseline architecture, regard-
ing flow-control, scheduling, queuing organization and oper-
ations in the ingress line-cards, credit semantics, crosspoint
buffers cut-through and dimensioning. It also presents some
alternative schemes for handling credits and a novel alternative
positioning of the input schedulers. Section 4 presents possible
queuing organization at the crosspoint and the related HOL
and buffer hogging effects.

In section 5.1, we propose a method, SQP, that resolves,
in the short term, HOL blocking and buffer hogging which
occur when many different priorities are multiplexed in a
shared lane; even with one queue per crosspoint, SQP prevents

unjustified starvation of high priority flows. Section 5.2 pro-
poses an enhanced version of SQP, method 2B-ADAPT, that
effectively supports multiple priorities with two distinct lanes
per crosspoint. Section 6 discusses the incremental hardware
cost of our methods and is shows that the only complexity
introduced is located in the ingress line-cards. In section 7,
we show through simulation that when eight priorities are
supported, even under highly irregular traffic, 2B-ADAPT will
not increase the average delay of the HIGHEST priority level
by more than 75 percent, when compared to a system with a
distinct lane per priority, i.e., four (4) times more buffering;
intermediate priorities experience much smaller discrepancies.
Under smoother patterns, like typical network traffic or Pois-
son arrivals, we find that the performance of the two systems
is almost identical. We also compare the variable-packet-size
buffered crossbar to a fixed-size-cell one and to pure output
queuing.

In many cases, while we define our architecture, we present
plots from simulations to consolidate our positions, or to
demonstrate the emerging trade-offs. These simulations as-
sume a 32�32 variable-packet-size CICQ switch with port
speed 10 Gb/s employing no internal speed-up and schedulers
that implement the Start-Time Fair Queuing [20] variant of
FQ 2. For information regarding the simulation models and
the simulation environment please refer to section 7 and to
appendix Simulator Architecture.

2 . PREVIOUS WORK & CONTRIBUTION

2.1. Buffered Crossbars

Buffered crossbar proposals date at least as far back as
1987: Nojima e.a. [21] described a “bus matrix” switch with
buffers only at the crosspoints (no input buffers), operating on
variable-size packets; Katevenis [22] proposed a switch with
small crosspoint buffers, large input buffers, and backpressure
between them (figures 10-13). Recently, with the availability
of technology for single-chip buffered crossbars, a number
of groups studied fixed-size-cell buffered crossbars –see for
instance [8] [9] and our previous work [10] [11]; from industry,
a representative example is [15].

2.2. Variable-Packet-Size Buffered Crossbars

Variable-packet-size crossbars have been proposed also in
[7] by Stephens and Hang and in [17] by Chrinstense et.
al. Our present work differs from these studies in that we
consider several design issues in variable-packet-size buffered
crossbars: Firstly, we demonstrate the pros and the cons of
placing the input lines’ schedulers within the crossbar chip and
we show that cut-through can be implemented at the crosspoint
buffers; we discuss for a reasonable buffer space per crosspoint
queue under cut-through and under store&forward. We analyze
various schemes for handling credits, with different storage
strategies within the crossbar chip and different backpressure
communication overheads; we present an “acknowledgment”

2These results assume a single priority level; multiple-priorities simulations
are presented in section 7 .
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semantics for the credits, which minimizes the backpressure
bandwidth required and also reduces the amount of credit
storage that must be deployed within the crossbar chip. We
also propose an algorithm to program scheduling operations
in the variable-packet-size context. These issues have not been
examined in previous works, or have been implicitly neglected.
Secondly, in a related work, [16], among other things, we
analyze the cost of an actual hardware implementation of
a variable-packet-size crossbar; in section 3 of this report
we give several cost estimates regarding gates, area and
power. The only other hardware study, [23], is for an FPGA
implementation.

Stephens and Zhang [7] consider variable-size internal
packets in their simulations, but limit their length up to twice
the minimum packet size, i.e., up to 80 bytes; larger external
packets are still segmented. Their focus is on providing rate
and delay guarantees to individual flows, and for this they
present simulations with overloaded output ports. Our simula-
tions explicitly model variable-size packets and study several
arrival patterns. Yoshigoe and Christensen [17] evaluate the
performance of the buffered crossbar only for crosspoint buffer
size of 1500 bytes (i.e., one MxPS), without specifying the
backpressure RTT and the bandwidth dedicated to credits,
while, we explicitly study the dependence of performance on
these parameters. In addition, our simulations implement cut-
through at the crosspoints, while theirs implement store and
forward.

2.3. Multiple Priorities

Concerning the multiple priorities, the only relevant studies
on buffered crossbar have been in [17] and in [15]. In [17]
a single experiment is conducted for only two priority levels
and Poisson arrivals. This paper does not show how to handle
multiple priority levels into a reduced number of crosspoint
buffers; we consider exactly this aspect, and our work applies
on both variable-packet-size and cell systems.

In [15] eight priorities are considered in a fixed-size cell
buffered crossbar, but the methods they employ to handle
multiple priorities are in our view costly and inefficient: by
implementing multiple “logical” queues in a shared crosspoint
buffer space, one for each priority level, (1) the complexity of
the crossbar chip is considerably increased; (2) the scheme
as presented in [15] can not resolve buffer hogging –this
effect is equivalently harmful with the HOL blocking, which is
prevented by employing per priority, logical, crosspoint queues
–, and (3) can not be extended straightforwardly in variable-
packet-size switches, since up to now, no study has shown how
to implement multiple variable-packet-size queues in a shared
buffer space without considerable fragmentation overhead.

In contrast, our methods (a) do not increase the complexity
of the crossbar-chip since we employ only crosspoint queues
implemented in private buffer space; (b) as we demonstrate
in this report, perform considerably better than a shared
crosspoint-memory system with multiple logical queues at
each crosspoint, and (c) are applicable in both variable-packet-
size and cell buffered crossbars.

To the best of our knowledge, this is the first published
study of how to effectively map multiple priority levels onto
a reduced number of queues in a buffered crossbar –and
perhaps in any kind of switch in general. The importance of
the report stems from this novelty and from the importance
of buffered crossbars –especially variable-packet-size ones–
as the probable emerging architecture of choice for future
commercial crossbar products.

The most relevant methods with our adaptive schemes,
SQP, SQP-opt and 2B-ADAPT, can probably be found in
the telecommunication/networking literature, for instance in
TCP flow-control. While we are only a little familiar with the
respective literature, we regard that our methods are novel in
this framework as well, since we take the impact of priority
scheduling under consideration in determining and avoiding
congestion.

3 . BASIC ARCHITECTURE

The system that we examine in this report is a buffered
crossbar with advanced input queuing (i.e., with virtual output
queues –in short, VOQs), that directly switches variable-size
packets; separate VOQs are maintained at each input for each
priority level (see fig. 2). We consider that traffic consists of
flows identified by distinct input/output/priority-level triples,
i.e., N��L flows, where L equals to the number of priority
levels that are supported. We refer to the VOQ that corresponds
to flow f as VOQ[ f ].

3.1. Flow-Control

1) Credit-based Backpressure: Credit-based flow-control is
employed in order to provide lossless transmission at the link
level between the input line-cards and the buffers within the
crossbar. When a packet is selected for service at the output,
a credit informing about the packet departure is sent to the
respective input. To simplify the design, we consider that the
credits are transmitted from a different interface than (user)
packets are.

2) Backpressure Bandwidth Overhead: The credit rate per
input port is set equal to one credit per minimum-packet-
size (or MnPS in short) time on the packet lines. This is the
minimum backpressure communication overhead that guaran-
tees stable operation for the switch: the average rate of credit
arrivals at an ingress line-card, i, cannot exceed the peak rate
of packet departures from ingress i (assuming unicast traffic).
In the worst-case, up to N credits with destination a single
input line-card can be generated in a MnPS time, if at some
point, all output schedulers serve crosspoint queues from the
same row of the crossbar and the HOL packets in these queues
have size equal to MnPS; such credit bursts must be stored
within the crossbar. In this report, we consider that the credits
for input i are stored in a FIFO queue, separate from all other
inputs. More sophisticated queuing/scheduling disciplines than
simple FIFO could be employed, but as demonstrated in [13],
the gain would not be very significant; still, this issue deserves
further investigation.
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Fig. 3. 32�32 switch, 10 Gb/s port speed, 2 KByte buffer space per
crosspoint; payload consists of packets with size that follows the Pareto
distribution (average-packet-size 400 bytes, MnPS 40 bytes, MxPS 1500
bytes)

3) Flow-control & Eligible Flows: Throughout this report
we consider that each flow has a dedicated VOQ; so we
consider that scheduling at the inputs is performed among
flows, which is equivalent to scheduling among VOQs. A flow,
f , of priority l, which arrives from input port i and goes to
output port j, is eligible for service at the contention point
located at ingress line-card i, only if: (1) VOQ [f ] contains
a packet p at its HOL and (2) the flow-control ascertains
that sending p toward the crosspoint queue, Q, assigned to
p, will not cause Q to overflow. All the packets of f use
crosspoint queues located at the crosspoint x i�j . Note, that
in some methods that we propose, a policy can mark a flow
as ineligible for scheduling at the input, even when conditions
(1) and (2) are true.

If a flow can use multiple different queues at the same
crosspoint, a routing decision is involved when checking the
eligibility of f , in order to determine the queue at crosspoint
xi�j , that will be used by packet p. In all our schemes,
except for 2B-ADAPT, all the packets of a flow, f , have
a predetermined crosspoint queue that they use, which is
dedicated to packets of f , or is being shared by packets of
multiple flows.

Only two of the scheme that we consider in this report
maintain a dedicated/private crosspoint queue for each flow,
i.e., MQDB and MQSB; most of our schemes multiplex
multiple flows, of different priority level, in the crosspoint
queues. So it is more simple to define output scheduling
among crosspoint queues. A crosspoint queue, Q, is eligible
for service at the output line of the crossbar, when a packet, p,
is stored in Q. We assume cut-through operation at the VOQs
and the crosspoints queues, so by the time a packet starts being
enqueued in an empty such queue, Q, Q becomes eligible for
service.
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Fig. 4. 32�32 switch, 10 Gb/s port speed, 2 KByte buffer space per
crosspoint; payload consists of MnPS packets only

4) Credit-Rate Experiments: Diagram 3 demonstrates the
relaxed dependency of backpressure bandwidth to the per-
formance of the switch. In this experiment we use uniform
Poisson arrivals and we increase the backpressure bandwidth
per input port, starting from one credit every two MnPS times
(	�
) up to �� credits every MnPS time, i.e., when the system
accommodates the peak rate that credits are generated. We see
that no observable improvement is accomplished by increasing
the backpressure communication overhead.

It is interesting that the 	�
 plot matches the � plot: since, in
this experiment, the average packet size is 400 bytes (packet
sizes follow the Pareto distribution), the worst case arrival
pattern, that we used to claim that the credit bandwidth should
be at least one credit every MnPS time, does not dominate.
This does not mean, by any way, that 	�
 is a good design
choice; it implicitly means though, that with variable-size
packet CICQ switches, the average power consumption on
the backpressure signals will be lower compared to fixed-size
cell CICQ switches and that the variable-packet-size switch, is
more stable under temporal malfunctions of the backpressure
protocol.

In diagr. 4 we perform the same experiment like in fig.
3, but we use only MnPS packets; as we can see in the
figure, all delays have been reduced by a factor of ten. This
is due to packets having on average ten times smaller size.
Again, increasing the credit bandwidth above 1 credit every
MnPS time does not improves performance. But here, the 	�

configuration performs very poorly for input load higher than
	�
, since when the incoming packet rate is greater than credit
rate, the generated credits built-up in the credit queues within
the crossbar chip, and the outgoing packet rate is limited by
the credit rate.

3.2. Positioning of Input Schedulers

An alternative architecture that we examined during the
early stages of this work, was to implement the input lines’
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Fig. 5. A 3�3 CICQ switch, (a) with the input schedulers at line-cards and (b) with input schedulers inside the crossbar chip

schedulers within the crossbar chip –see fig. 5. If these
schedulers are placed in the crossbar chip, they will have fast
and full access to the crosspoint buffer occupancy information,
and thus, the need for credit communication and credit storage
will be eliminated. But (i) these schedulers will add to the
cost of the crossbar chip; (ii) the ingress line-cards will need
to communicate to the crossbar the size of the head packet of
each VOQ 3; (iii) the scheduler’s decision would need to travel
to the line-card before the next packet can depart from the
line-card to the crossbar, effectively increasing the scheduler’s
latency and (iv) the schedulers would have delayed information
regarding the state of the VOQs.

For these reasons we abandon this alternative, although it
has the potential to increase the performance of the system:
assuming that the N schedulers corresponding to the N input
lines are maintained inside the crossbar chip, then these (a)
will have absolute knowledge of the current state at the
crosspoint buffers; this contrasts with the delayed information,
which they otherwise extrapolate from credits that are subject
to queuing and transmission delays; (b) each input scheduler
will have access to the state of all crosspoint buffers and not
only of the crosspoints at the corresponding row of the cross-
bar; such information is useful in implementing scheduling
disciplines at the inputs that take into account the congestion
at the outputs lines, since the latter can be estimated from the
occupancy of the respective crosspoint buffers [24]; finally, (c)
this architecture enables a closer form of coordination among
the input schedulers, which otherwise, when they are working
isolated in ingress line-cards distant from each other, they can
take independent decisions, that when combined, reduce the
short term utilization of the output lines.

For instance, when all input schedulers select packets that go
to the same output o, short term underutilization of the crossbar
can appear, if no packet is eligible at any other output. This
behavior can temporarily reduce the aggregate utilization of
the output lines by N times, since if the input schedulers had
selected packets destined to different outputs, all the outputs
would have been busy. Fortunately, in time proportional to a

3One message every time a VOQ is served, plus one message every time
a packet arrives into an empty VOQ.

crosspoint buffer’s size, the flow-control will impose on some
inputs to stop sending toward output o, and thus, this behavior
can not continue in the medium or in the long term.

3.3. Pending Packets & Pending Credits

A terminology that we extensively use in this report, is
that of pending packets and of pending credits. We name as
pending each packet p, that has been sent toward crosspoint
queue Q from the ingress, but its corresponding credit c has
not yet been received at the ingress. This means either (1) that
the packet has not reached the crosspoint queue, i.e, it is being
propagated; or (2) that the output scheduler has not yet started
serving p, or (3) that it has, but c is currently stored within
the crossbar or is traveling toward the ingress.

Pending credits are these credits that have been generated
by the transmission of a packet, but are currently stored inside
the crossbar chip, waiting for the their turn to start traveling
toward the ingress. So pending credits presume an associated
pending packet at the ingress, but the inverse relationship does
not hold in general: the p packet may be pending at the input
context, with p traveling toward the crossbar or with p waiting
for service at the crosspoint queue, that is with no associated
pending credit.

3.4. Credits Semantics: Acknowledgments & PSS FIFOs

In order to reduce the backpressure overhead in the variable-
packet-size switch that we consider, we employ the following
method. Each ingress line-card maintains a small FIFO for
each crosspoint queue, Q, that it feeds; each such FIFO stores
the size of each packet that is pending in the respective
crosspoint queue. We name these FIFOs, packets-sent-size
FIFOs, or PSS in short.

When the ingress line-card starts transmitting a packet
toward a crosspoint queue, Q, it also enqueues the size of
p in PSS [Q]. With this data structure, a credit needs only to
convey an id that discriminates Q between all other crosspoint
queues that are fed by the same input. Given this queue id, the
ingress line-card can retrieve the amount of the buffer space
that is deallocated in Q, by performing a dequeue operation in
PSS [Q]. This method (a) saves us log (MxPS) bits per MnPS
time, bandwidth that otherwise must be accommodated at the
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Fig. 6. A N�2 buffered crossbar, supporting three priority levels with a
separate crosspoint queue for each priority.

interface from the crossbar chip toward each ingress line-card;
and also (b) simplifies credit handling within the crossbar chip
(see section 3.6 ). Note that in the worst-case, a PSS FIFO
may need to store B/MnPS packets’ sizes, where B is the size
of the respective crosspoint queue. Under this semantics, we
name credits as acknowledgments (in short, ACKs).

3.5. Computation of VOQs Eligibility

One important issue in a variable-packet-size switch with
input buffering is the way that the ingress line-cards handle
variable-size packets, in terms of queuing and flow-control.
Regarding the credit flow-control that we employ, each input
line-card, i, maintains a credit counter (in short, CC) for each
crosspoint queue Q that it feeds; CC [Q] accounts for the free
space in Q that has been acknowledged to the input.

In order for a controller located at an ingress line-card, to
decide if the transmission of a packet, p, toward one such
queue, Q, will cause buffer overflow, the size of p must be also
available. This intricacy which is present only in variable-size-
packet switches can impose a prohibitive number of off-chip
memory accesses in the ingress line-cards, if packets’ sizes
are stored only in the VOQs, e.g. inside the header of the
respective packet.

1) VPS FIFOs: So we employ on-chip queues at the ingress
line-cards, one for each VOQ that the line-card maintains,
where we store the size of the packets at the respective VOQ.
With this data structure, that we name virtual-output-queue-
packets-size (in short, VPS), the controller at the input can
easily compute the eligibility flags of the competing flows
without additional off-chip memory accesses.

2) Rate of VOQs Eligibility Checks: As figures 6 and 7
demonstrate, this controller needs to compute the eligibility
flag of a flow f , only at times when packet of f , p arrives or
is served at the input, or at times when a credit concerning f
arrives. After computing this flag, the controller stores it into
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Fig. 7. A N�2 buffered crossbar, supporting three priority levels with a
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the eligibility registers which are used by the scheduler when a
new scheduling decision is required. The situation complicates
if multiple flows, G, share a crosspoint buffer or queue, in
which case, a credit from this queue can change the eligibility
flags of all flows in G. Assume for the moment that each flow
f has a dedicated crosspoint buffer/queue, Q, so that no other
flow can use Q; also assume that the the input knows a priori
which crosspoint queue to use for f ’s packets.

3) Packet Events: When a packet p of size s, belonging to
flow f , arrives to the input, (1) s is enqueued in VPS [f ], (2)
the eligibility flag of f is computed by comparing s with CC
[Q] (i.e., f is eligible iff s � CC [Q] ) and (3) it is stored
in the respective eligibility register (fig. 7). When p departs
from the ingress, (1.a) CC [Q] is decremented by s and (1.b)
s is enqueued in PSS [Q]; in parallel, (1.c) first a dequeue
(pop) operation and afterward a return-head (top) operation
are performed in VPS [f ], in order to find the size of the new
HOL packet in VOQ [f ]; finally (2) the new eligibility flag of
f is computed and (3) it is stored in the eligibility registers
–see fig. 7.

4) Credit Events: Figure 7 illustrates the operations that
take place when a credit (ACK) from crosspoint queue,
Q, arrives at the input: (i.a) a dequeue (pop) operation is
performed in PSS [Q] and (i.b) a return-head (top) in VPS
[f ]; next, (ii) the CC [f ] register is incremented by the value
dequeued from PSS [Q] in (i.a) and (iii) the eligibility state of
f is computed, by comparing CC [f ] with the value returned
from the top operation in the VPS [f ] in (i.b); (iv) this flag is
then stored in the eligibility register of f .

Special methods can be used to eliminate the need of this
on-chip FIFO memory, but are more specific to the particular
implementation of the VOQs’ controller. For instance, each
read access/fetch to a packet in the VOQs can be followed
by an access to the header of the next packet in the same
queue that dispatches the size field. If these packets are
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maintained in neighbor locations, then the two accesses can
be bundled together with negligible overhead. We have only
recently started to investigate schemes for logical queues
that accommodate variable-size packets; in this report, we
do pertain how the variable-size packet are maintained at the
VOQs, hence we do not consider such implementation specific
methods.

3.6. Credits Handling within Crossbar Chip

In this section, we investigate maintenance schemes for
the credits that have not yet been transmitted toward their
corresponding ingress line-card, and thus remain pending
inside the crossbar chip. Such methods are required when the
communication bandwidth that is dedicated to flow-control
between the crossbar chip and each input line-card, i, in
separate, cannot accommodate the peak rate that credits are
generated for input i. Consider for the moment input i only,
and thus, only the crosspoint queues that are fed by this input
and only the credits generated in these queues.

1) Credits Conveying Size: First suppose that the input
does not maintain the PSS FIFOs. In this case, the crossbar-
chip must explicitly inform the input about the space that
is deallocated from packets’ transmission. Two strategies can
be used to store the credits that contain this information and
which are pending within the crossbar.

(a) Each crosspoint queue maintains in a separate counter
the amount of the deallocated buffer space in the respective
queue, that the input has not yet been notified about. Thus
C� N� such counters must be employed within the crossbar,
where C is equal to the number of queues per crosspoint.
Each of these counters must be logB bits wide, where B is
the size of each crosspoint queue in words 4(total, additional
memory on chip C� N�� logB bits). No more bits are required
since the input is not allowed to have more than B words
pending in a crosspoint queue 5. Under this organization, if
we assume a non-uniform credit-format, the communication
bandwidth between the crossbar chip and the ingress line-card
must be at least logY bits per Y -words time on the crossbar
lines’, plus log (C� N) bits per MnPS time: the former term is
required to transfer the buffer space that is being deallocated
on average at the corresponding crosspoints (i.e., equal to the
rate that words from input i enter the crossbar) and the latter
term is required to transfer the crosspoint queue ids, when
back-to-back MnPS packets leave the crossbar.

If a uniform credit format is used instead, then, we can
either permit bundling of credits generated by the transmission
of multiple packets from a single crosspoint queue, or we can
dedicate each credit-message to the transmission of a single
packet. In the latter case, the bandwidth communication band-
width required is log MxPS + log (C�N) bits per MnPS time.
This is not efficient though, since it will cause underutilization

4Meaning the width of the datapath inside the crossbar chip
5We assume that each crosspoint queue has a private buffer, of size B

words, and thus, the buffer space at each crosspoint is C� B words; if the C
queues in a crosspoint share the B words buffer space, then the C term is
eliminated.

of the credit lines, when multiple credits are generated in
consecutive MnPS intervals, by the transmission of multiple
MnPS packets from a single crosspoint queue: each such credit
will be transmitted in a log MxPS + log (C�N) bits credit-
message, where only log MnPS + log (C�N) bits will be used,
and thus, a part of the credit lines’ throughput will be wasted.

If credits generated by multiple packets from the same
crosspoint queue can be bundled together in a single credit-
message, then the respective communication bandwidth is
logG + log (C�N) bits per MnPS time, where G is the
maximum buffer space that can be acknowledged within a
single credit-message. G is certainly smaller than B and must
be greater than MnPS.

In any case, under the uniform credit format we can set the
size of the credit-messages to a value smaller than it is imposed
by the MxPS packets (e.g., G lower than MxPS), if we are
allowed to send the credit information of larger packets in two
or more credit-messages. This may reduce the backpressure
bandwidth that is wasted when credits are generated by the
transmission of small packets.

(b) Each credit for input i is maintained as an individual
credit-message inside a buffer (e.g., a FIFO) dedicated to
the credits for input i; N such buffers are required inside
the crossbar chip, one for each input. Each credit-message
is generated by the transmission of a packet from a crosspoint
queue on the output lines, and contains the size of the packet
and the id of queue. Thus each entry in that buffer has
width log (C� N) bits for the queue id plus log MxPS for
the deallocated buffer-space in that queue; assuming that one
credit is transmitted toward each input every MnPS time, this
buffer must have approximately C�N� B

MnPS
entries.

This buffer space compensates for the case, when all outputs
continuously service MnPS packets from crosspoint queues
corresponding to input i, thus generating N credits for this
input in every MnPS time while that backpressure bandwidth
can accommodate only one; obviously, since the respective
crosspoints cannot hold more than C�N� B

MnPS
pending pack-

ets, this will not continue for very long. Hence, the total buffer
space inside the crossbar chip for credit-messages will be
approximately C�N�� B

MnPS
�[ log (C� N) + log MxPS ] bits.

The read rate in a buffer corresponding to a single input must
be log (C� N) + log MxPS bits per MnPS time and the write
rate N� [ log ( C� N) + log MxPS ] per MnPS time.

2) Acknowledgments: Now consider that the input main-
tains the PSS queues, hence, each credit needs only to carry
a crosspoint queue id (ACK). Again, as with the credits-
conveying-size semantics, two strategies are possible:

(i) Each crosspoint queue maintains a counter for its ACKs
that are pending inside the crossbar chip; thus we need C�
N� such counters in total. The width of each counter must be
log B

MnPS
bits. No more bits are needed since the input is not

allowed to have more than B
MnPS

pending/unacknowledged
packets into a single crosspoint queue. Similarly to (a), the
backpressure bandwidth required for each input port is logY
per Y -MnPS time plus log (C� N) bits per MnPS time under a
non-uniform credit format, and logW + log (C� N) per MnPS
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EXPLICIT-CREDITS Vs ACK-CREDITS
STORAGE TYPE: COUNTER BUFFER COUNTER BUFFER
CREDIT-FORMAT: uniform non-uniform uniform uniform non-uniform uniform

logG� log Y log �C �N�� logW� log Y log �C �N�
backpres. B/W log �C �N� 1 word time log �MxPS� Y�MnPS time
(per input port) plus log �C �N� log �C �N� plus log �C �N� MnPS time

bits per MnPS time MnPS time MnPS time MnPS time MnPS time
storage size C �N

�
�

B

MnPS
� C �N

�
�

B

MnPS
�

in crossbar-chip C �N
�
� logB � log �C �N� C �N

�
� log � B

MnPS
� log �C �N�

(in bits) � logMxPS �
R&W B/W of �N � ��� �N � ���

each cred. buffer � � log �C �N� � log �C �N�
(1 per input-port) � logMxPS � MnPS time

in bits per MnPS time

TABLE I

COST ESTIMATES FOR DIFFERENT CREDIT HANDLING SCHEMES

time under a uniform one, where W is the number ACKs
from a single crosspoint queue, that can be bundled together
in single credit-message. As in (a), W must be greater than 1
and is lower than B

MnPS
; intermediate values are also possible.

(ii) A buffer (e.g. FIFO) stores all the ACKs that are pending
inside the crossbar and are destined to the same input; again
we need N such buffers in the crossbar, one for each input. If
one ACK is being transmitted toward each one of the inputs
every MnPS time, then the depth of each buffer must be
approximately C�N� B

MnPS
entries –see (a); each entry must

be log (C� N) bits wide, and thus C�N��log (C� N) � B
MnPS

bits are required within the chip . The access rate (read and
write) to each buffer must be (N + 1)� log (C� N) bits per
MnPS time.

Table I summarizes our points regarding the credit handling
schemes that we consider in this section. This table shows that
the acknowledgment semantics for credits achieves significant
savings in communication and storage cost. Regarding the
counters or buffers dilemma, one point is that the former need
the counter logic in addition to counters registers (memory),
whereas, buffer storage can be implemented as a simple shift
register or a register file; SRAMs can be used if extensive
storage for pending credits is required. Finally the non-uniform
credit format reduces backpressure communication overhead
but complicates the design.

Under strategy (ii) we can make the following optimization:
(iii) Instead of employing a separate buffer entry for each
distinct ACK generated from some crosspoint queue at a single
row of the crossbar we can use a bitmap that can contain
up to C� N ACKs, generated by distinct such queues. Each
crosspoint queue in a row of the crossbar will map into a
single position in the respective bitmap, thus the size of the
bitmap will must be C� N bits; the value “one” for some
bit means that the respective queue has generated one ACK
which is pending inside the crossbar. With this optimization,
we eliminated the need to store the queue ids associated with
the acknowledgments, and thus the read/write access rate to
each credit-buffer is reduced, i.e., two bitmaps (i.e., 2� C� N
bits) per MnPS time per input port. Using the same reasoning

as in (a), it turns that the size of a credit buffer corresponding
to some input port must be approximately B

MnPS
bitmaps i.e.,

C� N� B
MnPS

bits. Note that instead of a bitmap, we can employ
an array containing ACK-counters, M bits wide each, to create
a mix of strategies (i) & (iii).

3) Reducing Credit Storage: Under many of the aforemen-
tioned schemes, we can use another level of flow-control to
limit the buffer/counter size required to store pending ACKs
within the crossbar chip. With backpressure on the generated
credits, a crosspoint queue will be eligible for service at the
output of the crossbar only if it can “store” the credit/ack that
will be generated. This backpressure can be made selective
(i.e., in row of the crossbar only the crosspoint queues that
have send “many” credits are blocked), in which case it will
better serve overall scheduling, since no unjustified blocking
will occur. Note that this flow-control on credits engages
entities which are located in the same chip, and thus, it can
be made fairly simple and effective.

Under (ii) or (iii) we can eliminate credits storage within the
crossbar chip, if the backpressure communication bandwidth
of the crossbar-chip with each ingress line-card can accommo-
date the transmission of one bitmap (C� N bits) every MnPS
time. In this case, it is simpler to transmit directly the ACK
bitmap to the input; this saves us the need for complex credit
handling methods within the crossbar chip and also enhances
performance, since the credits will be transmitted with no
queuing delays. But this choice is acceptable only for low
port counts or low datapath rates. We used this technique to
build a ��� buffered crossbar, switching variable size packets
in an FPGA.

4) Implementation Considerations: Considering an actual
implementation of a medium scale switch, one would normally
dedicate one twisted pair for the backpressure communication
of the crossbar-chip with each input line-card in separate.
Assuming that eight twisted pairs are dedicated in the reverse
direction for the packets payload, in a MnPS time we can
transfer approximately up to five bytes of credit information;
this backpressure bandwidth translates into 5-6 ACKs under
schemes (i) or (ii), when N equals 32 and C is equal to 2.
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Fig. 8. Store & Forward

Thus, the details of the implementation will normally impose
the most appropriate scheme for handling the credits.

An other implementation issue related to credits handling,
is how to recover when a credit or a packet is lost due to line
failure. We consider such issues in [16], where we design in
hardware a single-chip, ��� ��, variable-packet-size buffered
crossbar.

3.7. Crosspoint Functions

We consider that each crosspoint queue, Q, resides in a
private buffer space of a dual-ported SRAM [16] and that it
is implemented using a head and a tail pointer that move
circularly inside the buffer space dedicated to Q. Circular
queues have the advantage that they can typically accommo-
date variable size packets. As we have mentioned, a packet
switches clock domain inside the crosspoint queue; the read
(head) pointer is synchronous with the output link’s clock,
whereas the write (tail) pointer is synchronous with the input
link’s clock.

The output schedulers within the crossbar chip perform cut-
through, i.e., a packet becomes eligible for scheduling at the
output side of the crossbar, at the time it’s header reaches the
crosspoint logic, that is even before it’s entire body has been
stored in the crosspoint buffer. An efficient implementation for
this organization at the crosspoints is demonstrated in [16].

1) Store & Forward: If we implement store and
forward at the crosspoints, then the buffer space per
crosspoint queue required to sustain full output-link uti-
lization even when a single flow, f , is active, is:

BSTORE = 2 � MxPS
Assume that LR stands for the line rate and RTT stands

for the delay from the generation of a credit till the first
word of a packet, that utilized this credit at the input, starts
being transmitted on the output lines of the crossbar assuming
that the crosspoints perform cut-through. So, in RTT we
include the propagation delay of a packet’s, p, header, from the
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ingress line-card toward the crosspoint, but not the associated
transfer delay of packet’s p body; this latter delay is necessary,
before the output considers p as eligible for service, when the
crosspoints implement store and forward.

BSTORE buffer space at each crosspoint queue is necessary
when f sends continuously pairs of MxPS packets, p� and p�,
at full line rate. If this buffer space is not available to f , then
every p� packet will be blocked by the corresponding p� at the
input; the credit for p� will be generated when p� is selected
for service, and thus when p� will be written in the crosspoint
queue e.g. at time t�. The second packet p�, will be eligible at
the output, at time t� + RTT + MxPS

LR
, i.e., when p� will also

be written in the crosspoint queue after receiving p�’s credit.
Thus the output line will remain idle in the interval that starts
from t� + MxPS

LR
when the transmission of p� ends, till t�

+ MxPS
LR

+ RTT, when p� will start being transmitted on the
output lines. –see fig. 8(a).

Additionally, store and forward has the drawback that it can
increase considerably the delay of individual packets. Suppose,
for instance, that two back-to-back packets of different size,
arrive at a crosspoint queue –see fig. 8(b). Compared to cut-
through, store and forward can increase the delay of the second
packet, by time proportional to its size, while the output line
remains idle –see fig. 8(b).

2) Cut-Through: Under cut-through, the minimum buffer
space at each crosspoint queue, that is required to sustain
full output-link utilization even when a single flow is active, is:

BCUT=RTT � LR + MxPS .
To understand why, consider that a flow, f , sends pairs of
back-to-back packets at full line rate; each first packet, p�,
has size s� equal to MxPS, and every second packet, p�, has
size s� equal to max [ B - MxPS, MnPS ], where B is the
size of the crosspoint queue that is used by f ; p� and p� have
been selected so that (1) s� is as small as possible, while
(2) p� is able to block p� at the input. Condition (1) creates
the necessary condition for underutilization, and condition
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surements for output utilization are zero. Upper curves stand for SynthBackb
traffic, lower curves for worst case.

(2) maximizes the duration of this possible underutilization.
We claim that with buffer space at the crosspoint queue
equal to BCUT , no underutilization can occur. This happens
because with BCUT buffer space, we impose that p� will
be blocked at the input only if s� is greater than RTT�LR.
But in this case, when p� will be ready for transmission at
the output after receiving p�’s credit (i.e., RTT times after
starting transmitting p� on the output lines), the output will
still be busy transmitting p�, because its size is greater than
RTT�LR. So, full output utilization is guaranteed. In this
example, we assumed that if the size of p� is greater than
RTT�LR, then the credit corresponding to p� is generated at
most RTT before the transmission of p� ends; if the size of
p� is smaller than RTT�IR, then the credit must be generated
immediately at the start of p�’s transmission; if we delay
the generation of the credits, then the respective buffer space
requirement will be 2 � MxPS –see fig. 9. In the system
we simulate in sec. 7, cut-through is implemented at the
crosspoints and credits are generated immediately when the
transmission of packets start.

Figure 10, demonstrates the behavior of the switch regarding
the relationship of the RTT with the buffer space required at
each separate crosspoint queues. In this experiment we use a
single, persistent flow, and MxPS and MnPS are set equal to
1500 bytes and 40 bytes respectively. For buffer size B, at
the crosspoint queues, varying from 1400 to 2400 bytes, we
measure the output utilization as a fraction of the line rate; we
repeat the experiment for RTT values varying from 250 to 700
byte times. First, we let the packets of the flow being generated
by a realistic traffic pattern, SynthBackb, which is explained
briefly in sec. 7.3.2, and then, by the aforementioned, worst-
case pattern. As the figure shows, output underutilization
occurs for every B less than MxPS + RTT�LR. This knee
in the utilization plots at crosspoint buffer size equal to MxPS
+ RTT�LR is more evident under the worst-case scenario, but
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appears also and under the SynthBackb arrivals.

In diagram 11, we measure the average packet delay of store
and forward and of cut-through, with varying buffer space
at the crosspoint under uniform Poisson packet arrivals. The
different plots correspond to configurations with 1500 bytes
(i.e. equal to MxPS), 2 KByte (i.e. equal to BCUT ) and 3000
bytes (i.e. equal to BSTORE) buffer space at each crosspoint.
We can see that cut-through performs better than store and
forward, under all buffers’ size.

In fig. 12 we use cut-through and we demonstrate that under
round-robin scheduling and uniform Poisson traffic, increasing
the buffer space per crosspoint queue beyond BCUT will not
boost the performance considerably; this is not true when
weighted round-robin scheduling is employed at the contention
points [10], or when the packet arrivals are not uniformly
distributed to outputs.

In diagr. 13, we employ an imbalanced (i.e. non-uniform)
traffic scenario that we borrow from [4]; each input sends with
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probability 0.5 to a distinct “favored” output and distributes
the remaining incoming traffic to the remaining outputs, uni-
formly; as in [4], this pattern is feasible. In fig. 13 we see that
the 2K system saturates near input load 0.9; the throughput
increases with increasing buffer space and becomes close to
1.0 when 10 KByte or more of buffer space are employed at
each crosspoint. This traffic pattern is very interesting, since
many of the switch architectures that are currently considered
for high-speed switches, buffered or unbuffered, cannot sustain
it well. One interesting approach to eliminate this effect in
CICQ switches, has been presented in [24]. We have also
been searching for similar scheduling methods, that take into
account the occupancy of the crosspoint buffers –see method
adaptive-WRR in [25], appendix D, page 145.

3.8. Scheduling Discipline at Contention Points

Currently we use symmetric scheduling at the input and
output contention points. Remember that for a flow, f , to be
eligible at the input, two conditions must hold: (a) a packet, p,
must be present in VOQ [f ] and (b) the buffer space available
to the crosspoint queue Q, where p will be sent, must be
greater or equal to the size of p, i.e., in credit-based flow-
control terms: CC [Q]� sizeof (p); a crosspoint queue, Q, is
eligible at the output, if it contains at least one packet –actually
it suffices that the header of the packet has reached Q, since
we perform cut-through at the crosspoints.

The scheduling discipline assumed at the input and the
output links is a combination of non-preemptive priority
scheduling and Fair-Queuing (FQ) implemented by the SFQ
variant, with all flows having equal weight: when queues of
different priorities are eligible for service, the highest eligible
priority, l, is selected; if multiple queues with priority l are
eligible, we use SFQ to select one of them. We use SFQ and
not simple pointer-based RR, since the latter is oblivious of
packets’ size, and by so can produce unfairness, for instance,
when it serves a MxPS packet from a flow, f , and a MnPS
packet from a flow, g, in a round-robin fashion.

3.9. Scheduling the Operations at the Contention Points

Scheduling variable-size packets introduces some intrica-
cies, since the time that it takes to transmit a packet on the
crossbar lines varies due to the varying size of packets. One
constrain is that the scheduling delay (in short, SD) must be
less than the MnPS time, so that back-to-back MnPS packets
can be forwarded at full line rate.

Name as ts start the time when a scheduling operation
starts and as ts end the time when scheduling finishes, i.e.,
ts end � ts start + SD. Let ST (t) denote the state of the
variables affecting this scheduling decision at time t; ST
includes flows/queues eligibility, credits state etc; obviously
this state can change at any time. We assume that the scheduler
picks and uses a snapsot of this state at time ts start, after all
events that affect ST (t) at time ts start have been considered;
any events that occurs in the interval �ts start� ts end�, cannot
affect the scheduling outcome. We use this hypothesis, since
we believe it is generic enough to accommodate any kind of
scheduler.

1) Scheduling Timing: After the scheduling decision is
taken at time ts end, the operations for the transmission of
the selected packet p�, start. We regard that a new packet,
p�, can start transmission at time ts end + s

LR
, where s is

the size of p�. If p� and p� are to be sent back-to-back, the
latest moment that the next scheduling operation should start
is ts end + s

LR
- SD, so that the next scheduling phase overlaps

with the transmission of the last words of p�. We do not want
to start scheduling earlier than this time, so that the scheduling-
space (the number of eligible queues) is as “wide” as possible
and scheduling sophistication can take place; we do not want
to start scheduling later than ts end + s

LR
- SD, so that no

bandwidth is lost, if at that time one or more eligible flow are
waiting for service.

Before the start of a scheduling phase, a controller first
checks to see if there exists at least one eligible queue –we
assume that this operation, a huge OR gate on the queues
eligibility flags, has essentially zero delay when compared
to the delay of sophisticated scheduling algorithms. If no
queue is found eligible at this time, the controller does not
start a scheduling operation/phase, but deters scheduling for
the first moment when some queue will become eligible. In
this way, some bandwidth is saved in case that a flow, f ,
becomes eligible during a “null-result” scheduling phase, i.e.,
a scheduling operation, with duration SD, that finds no flow as
eligible. If we allowed such “null-result” scheduling operations
to take place, then f would have to wait for the end of the
ongoing “null-result” phase, before the scheduler could select
it at the next scheduling phase, and thus, f ’s delay would be
increased unnecessarily.

2) Scheduler/Link Controller: Figure 14, shows graphi-
cally the finite-state machine of the controller that schedules
the operations at an input or an output contention point
(i.e. line) of the crossbar: IDLE-SCHEDULING means that
scheduling operation is taking place while no packet is being
transmitted on the corresponding link; BUSY-SCHEDULING
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means that scheduling operation is concurrent to the transmis-
sion of a packet. When the controller enters the BUSY state,
signaling the start of the transmission of a new packet, p�, at
some time t, it also programs a Timer-Event (e.g., as generated
by a counter) to occur at time t + s

LR
- SD, where s is the

size of p�. As we stated above, changes in the eligibility flags
of the queues before this Timer-Event triggers are neglected
by the controller.

When the Timer-Event triggers, the controller checks the
eligibility of the queues, and if it finds at least one eligible,
(a) it enters into the BUSY-SCHEDULING state to select a
new packet, p�, that will be transmitted at time t + s

LR
; at

this time the controller enters again into the BUSY phase, but
now for the transmission of the new packet p� 6.

If no eligible packet is found when the Timer-Event triggers,
(b) the controller returns with zero delay into the BUSY
state. But now, if a queue becomes eligible at some time
t� after t + s

LR
- SD while the controller is still BUSY

transmitting p�, the controller will immediately enter the
BUSY-SCHEDULING state, so that the new eligible packet
can be served at at time t� + SD, when the transmission of
p� will have certainly ended.

Other optimizations are also possible. For instance we can
preempt the current scheduling phase, when a high priority
queue becomes eligible while the scheduler is considering
only flows with lower priority. Certainly the details of these
optimizations depend strongly on the architecture and the
actual algorithms used to implement the scheduler in hardware.

6Note that the Packet-Transfer-Ended event associated with the transmission
of packet p�, which is also programmed to occur at t + s

LR
, is masked-out

in this case since, otherwise, it could switch the controller’s state from BUSY
to IDLE while the controller is BUSY transmitting p� and not p�.

3.10. An Example of the Switch Operation: RTT

In this section, we present an operation scenario of the
simulator that we created for the variable-packet-size buffer
crossbar switching –see appendix Simulator Architecture. The
scenario and the simulator, emulates the order of the basic
operations in an actual switch. Suppose that a new maximum-
size packet, p, arrives at the input line-card i at time t, and
that there are adequate credits for this packet to travel toward
it’s corresponding crosspoint queue, i.e., no other packet is
present in the system.

The input scheduler will start scheduling at time t and
will finish at time t + SD; at this time, a memory access
will be performed, to fetch the packet from the VOQs. So
after memory access delay (in short, MemDel), that includes
memory/bank activation, row and column accesses, plus the
delay at the chips interfaces, the first word of the packet will
be inside the ingress line-card chip, ready for transmission
towards the crossbar chip. After a propagation delay (in
short, PD), that includes the time-of-flight on the interconnect
between the crossbar-chip and the ingress line-card, plus the
delays at the chips interfaces and the delays that occur in
extensively pipelined circuits, the packet header will reach
the crosspoint buffer 7, and the packet will be eligible for
scheduling at the output.

The output-scheduler will start scheduling at time t + SD +
MemDel + PD, and will finish at time t + 2� SD + MemDel
+ PD; at this time an ACK will be generated, that must be
sent to the ingress line-card i. For now we assume zero credit-
scheduling delay (e.g. on-chip FIFO queuing), so this credit
can start being propagated immediately, since we assumed
that no other packet or credit is present in the system. After
a propagation delay, and a transfer delay for the credit (in
short, CD) equal to credit message size

credit line rate
, the ACK will reach

the ingress line-card i at time:
RTT = t + 2� SD + MemDel + 2� PD + CD,

and the input scheduler will be able to make a new scheduling
decision, that takes this credit under consideration.

So the Round-Trip Time, RTT, includes two scheduling and
two propagation delays, one “first-word” delay in off-chip
memory, and one credit transfer time (CD) on the backpressure
interface that connects the crossbar-chip with an ingress line-
card. As we have mentioned above, we want the scheduling
delay and the credit transfer delay on the credit-lines to be
slightly less than a MnPS time (i.e., MnPS

LR
). Using these

requirements we have that :
RTT = 2� PD + MemDel + 3�MnPS

LR
.

The dominant factors on the RTT are the propagation delay
and the MnPS time. Note though, that current trends show
the MnSP time to decrease as line speed increases, and the
propagation delay to increase, as switches are now oriented
over multiple racks, distant from each other by tens of meters,
basically for cooling purposes [15]. Also observe that when
internal speed-up is employed, the LR in the RTT equation

7We currently consider that the internal header of the packets’ internal
header have zero size.
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Fig. 15. (a) HOL blocking & Buffer Hogging in a SQ switch (b) SQP, see section 5.1.1

is multiplied by the speed-up factor, s, and thus, the RTT
decreases; nevertheless the minimum required buffer space at
each crosspoint increases by a term equal to s� [ 2� PD +
MemDel ] –see section 3.7.2 .

4 . QUEUING ORGANIZATION AT THE CROSSPOINTS

Separate lanes per priority at each crosspoint are desired in
order to provide flow isolation and protection, thus for reasons
similar to why a buffered crossbar provides better performance
compared to a shared-memory architecture. The incremental
cost of each additional crosspoint lane is counted in buffer
space that must typically be implemented within the crossbar
chip: N�� RTT�LR for a CICQ system switching cells, and
N��( RTT�LR + MxPS) for a CICQ switch directly transmitting
variable-size packets.

4.1. Partitioned Crosspoint Buffer

In a CICQ system that deploys a separate crosspoint
buffer/queue (or lane) per priority level, each flow is statically
mapped to a separate crosspoint queue. Thus each ingress
line-card maintains N�L credit counters, L for each crosspoint
that it feeds; and a credit, c, that arrives at the input from
a crosspoint queue, affects the eligibility status of one flow
only. This simplifies the controller that is required at each
ingress line-card, to determine which flows are eligible to be
transmitted toward the crossbar (see section 3.5 ).

1) L Crosspoint Lanes: MQDB - The Ideal: We name
the CICQ switch that employs a separate crosspoint lane for
each priority level as multiple-queue-distinct-buffer (in short,
MQDB). The drawback of the MQDB architecture is that it
requires buffer memory in the crossbar chip that increases
linearly with the number of the priority levels, i.e., O ( L�
N�). An instance of a MQDB switch supporting two priorities
is presented in fig. 2.

4.2. Shared Crosspoint Buffer

A CICQ system that deploys less than L distinct buffers at
each crosspoint, has to multiplex multiple priorities in a shared
buffer. Two organization are possible; the first implements
a single crosspoint queue, whereas, the second implements
multiple logical queues in the shared crosspoint buffer space.

1) One Crosspoint Lane: SQ - HOL blocking: If a single
crosspoint queue, Q, is shared among multiple priorities and
low priority packets have been enqueued in Q first, a higher
priority packet that is inserted after them can experience
unacceptable long delay until it becomes the head of Q; this
phenomenon is known as Head Of Line (HOL) blocking –fig.
15(a). We name the respective CICQ architecture as single-
queue (in short, SQ). In SQ the number of priority levels
supported does not affect the memory required within the
crossbar chip –O( N�)– and one credit counter at each input
for each output suffices.
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2) L Logical Crosspoint Lanes: MQSB - Buffer Hogging:
Even if multiple queues, one for each priority, are maintained
at each crosspoint but these queues share a common buffer
space (i.e., logical queues) similar effects to HOL blocking
can occur if low priority packets have exhausted the shared
buffer space: higher priority packets, that are ineligible for
service at the input due to flow-control, will have to wait until
the low priority queues are served, so these can experience a
delay comparable to that of low priority traffic; this effect is
known as buffer hogging.

We name a system with multiple logical queues at each
crosspoint, one for each priority level, as multiple-queue-
shared-buffer (in short, MQSB), when all the queues at a
crosspoint share a common buffer space. MQSB requires the
same amount of buffer memory inside the crossbar chip, and
the same structures for flow-control operation in the ingress
line-cards, with SQ.

Note that buffer hogging can also appear in the SQ scheme,
while MQSB by definition prohibits HOL blocking. Both HOL
blocking and buffer hogging can have destructive effects on the
higher priorities. Even a flow in the HIGHEST priority level,
that normally receives preferential service, can experience
starvation, which is indirectly induced by congestion of flows
with intermediate priority –fig. 15(a)

A disadvantage of MQSB compared to SQ, is the con-
trol circuit, that is required at each crosspoint in order to
maintain the logical queues. Besides the fragmentation that
can occur if variable size packets are to be stored inside
the queues, this scheme significantly increases the complexity
of the already heavily loaded crossbar chip. Instead, circular
queues, implemented in private buffer space, require much
simpler control (e.g. a head and a tail counter) and do not
incur fragmentation. Additionally, the implementation of a
queue through a linked list, requires an nxt pointer for each
memory block compromising the linked list, thus, consumes
additional on-chip memory. A MQSB system, switching cells,
is examined in [15].

3) RS optimization - Reducing Input Complexity: Under
the SQ or the MQSB architecture, upon the arrival of a credit
for a shared crosspoint queue, the controller associated with
an ingress line-card may need to compute the eligibility of
the L flows that use this queue i.e., flows that go through the
same crosspoint and have different priorities (see section 3.5
).

We can remove this intricacy if we employ the following
discipline at the inputs: Denote by g the flow of the highest
priority among all flows, G, with non-empty VOQs that go
through the same crosspoint: if g is ineligible for service at
the input, obviously due to missing credits for the shared
crosspoint buffer space, then all flows in G will also be
considered as ineligible. Under this discipline, a credit arrival
event will induce the computation of the eligibility status of g
only. We name the respective SQ and MQSB systems, as SQ-
reserve-space and MQSB-RS-reserve-space (in short, SQ-RS
and MQSB-RS), respectively.

We named this discipline as reserve-space, because, in

addition to reducing input complexity, the RS tends to reserve
the shared buffer at each crosspoint to the flow of the highest
priority among all corresponding active flow. Thus, we expect
that the HOL blocking and buffer hogging, that are present
in SQ and MQSB, are normally reduced with the RS opti-
mization: when variable-size packets are transmitted from the
ingress in a SQ or a MQSB switch, then a low priority flow,
f , that sends small packets, may win scheduling rounds at
the input by taking advantage of that the higher priority levels
going to the same output are currently ineligible, because they
have large packets at the HOL of their VOQs. Consequently, f
consumes additional credits for the buffer at the corresponding
crosspoint, and thus, the same situation is renewed, or even
worsens by reforming into buffer hogging. But even when a
higher priority finally finds the credits necessary to travel to
the crosspoint, it has to face the potential of HOL blocking
caused by the packets of f . The RS optimization is expected to
reduce this lingering of high priority packets behind “lucky”,
low priority packets. We confirm this behavior by simulations
in section 7.3.1 .

5 . METHODS

The methods that we propose use circular queues at the
crosspoints. We do not consider schemes with multiple logical
crosspoint queues, since we believe that this approach sig-
nificantly increases complexity, especially in variable-packet-
size CICQ switches. During the early stages of this work we
tried to implement two circular queues storying variable-size-
packets, inside a shared buffer and we verified how complex
this is [26].

So, now, in order to reduce the memory required within
the crossbar, we have to multiplex multiple priorities into a
reduced number of lanes (queues/buffers). We first consider a
scheme with only one such lane per crosspoint, and afterward
we consider a more sophisticated method, which employs two
such lanes at each crosspoint.

5.1. One Crosspoint Lane with Push-Forward: SQP

In the first scheme that we explore, like in SQ, all flows
from the same input that go to the same output share a
single crosspoint queue. So the system, as presented so far,
is vulnerable to HOL blocking and buffer hogging.

1) SQP: In order to resolve HOL blocking we employ the
following discipline at the crosspoints: the “effective priority”
of a crosspoint queue Q, for output scheduling purposes, is the
highest of the priorities of the packets currently enqueued in
it; in this way, Q drains with the priority of the most “urgent”
packet currently inside it. By doing that, low priority packets
at the HOL can no any longer cause starvation to high priority
packets behind them. We name this scheme single-queue-push-
forward (in short, SQP) –see fig. 16(b).

To resolve buffer hogging, the input in SQP sends a special
packet to signal this priority upgrade, in lieu of the actual
packet which cannot be sent due to flow-control constraints.
Special packets are not stored in crosspoint queues, neither
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they are forwarded to outputs, but they are subject to schedul-
ing at the input8 and are transmitted like normal packets,
through the same interface. Their size has been set equal to a
MnPS, so that the scheduling rate is not affected.

2) SQP optimized: Consider now the case, where an input,
i, has not yet received credit from a crosspoint queue, Q, for a
packet of priority l�, higher than the highest eligible priority,
l, in the VOQs that correspond to Q.

This fact indicates probable heavy traffic at level l� or higher
in the crossbar. Under such conditions, if a priority l packet
is enqueued in Q, this will need to wait until all packets
in front of it are served and probably even more if output
congestion actually occurs; this increases the probability that
buffer hogging or HOL blocking will appear if a packet with
priority higher than l arrives later at input i for the same output.
So we performed the following optimization to SQP: when
packets of priority l� or higher are still pending (i.e., not yet
acknowledged to the input by means of credits) at a crosspoint
queue, Q, the input is not allowed to send a packet with priority
lower than l� toward Q.

We name this system as SQP-optimized (in short, SQP-opt).
Although SQP-opt is not work-conserving, we show through
simulations, that compared to SQP, it significantly reduces
the delay of all high priorities, without considerably affecting
the crossbar utilization. Another advantage of SQP-opt is that
it simplifies the priority upgrade mechanism that must be
implemented at the crosspoints.

8They inherit the priority of the packet blocked at the input

3) SQP-RS: The RS optimization has no meaning under the
SQP-opt system: in SQP-opt, if a packet of priority l is not
eligible at the input due to lack of credits and (1) the effective
priority of the corresponding crosspoint queue, Q, is lower
than l, then the respective flow, f , will be eligible to sent a
special packet of priority l, and thus, the priority scheduler at
the input can not select a lower priority packet. When (2) the
effective priority of Q is equal or higher than l, then f will
not be eligible at the input, but the same will also hold for all
flows of lower priority flows than l (SQP-opt discipline). The
latter statement does not hold under SQP, so we can define
the respective SQP-RS system, similarly to SQ-RS.

Although with the aforementioned methods persistent buffer
hogging and HOL blocking that may appear under worst-case
scenarios are resolved, this comes at the cost of occasionally
transmitting packets with higher priority than their specifi-
cation, which increases the load at higher priorities, hence,
potentially increases the average delay of high priorities.
Considering that the crosspoint queues have relatively small
capacity, we expect that this counter effect will not play a
dramatic role.

5.2. Two Crosspoint Lanes with Adaptive Mapping: 2B-
ADAPT

Our second method employs two separate lanes at each
crosspoint. This is feasible with todays ASICs, at least for
a 32�32 switch, with 10 Gb/s port rate. Nevertheless the
complexity and the cost of the design increases, given that the
area of the crossbar chip in a buffered crossbar is dominated
by SRAMs modules –see [16].
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Since there are two lanes that a packet may use to reach the
scheduler at the output, a routing problem arises, i.e., to decide
which such lane to use for a flow’s packet. We favored for a
dynamical routing performed on the packet level, and not for
statical one, e.g., in the flow level; the entity that we employ
to performs the routing is also a policer, since it can block a
packet, in order to reserve the lane for higher priorities.

Our method, 2-buffers-with-adaptive-mapping (2B-ADAPT
in short), uses SQP-opt ideas in a more sophisticated way. We
assume two separate buffer/queues (lanes) per crosspoint; UP
stands for one of these lanes and DOWN stands for the other
–fig. 17.

1) Input Policy: An algorithm, Alg-2B-ADAPT, running
independently at each input line-card, decides through which
lane a packet can make it to the output. Alg-2B-ADAPT
should not be confused with the input scheduler; essentially,
Alg-2B-ADAPT monitors whether a flow f is eligible for
service: it returns UP or DOWN when it finds f eligible –the
packet at the HOL of f ’s VOQ can then use the respective
lane– and NONE otherwise. The input scheduler, as described
in sec 2.1, selects one of the eligible flows. Alg-2B-ADAPT
is adaptive, since it processes packets based on the run-time
state of the two lanes at the corresponding crosspoint.

2) Output Scheduler: The output scheduler in 2B-ADAPT
considers all the non-empty UP and DOWN queues in a
column of the crossbar and serves the one with the highest
effective priority (l); when both the UP and DOWN queues
in a crosspoint have the effective priority l, the scheduler
selects UP. We can imagine that a crosspoint scheduler/arbiter
selects UP or DOWN, according to the above discipline, and

propagates it’s decision to the corresponding output scheduler.

3) 2B-ADAPT Goal: The main idea in 2B-ADAPT is the
following. Consider all flows from a given input to a given
output. We try to use only the DOWN lane, but when multiple
priorities are active, we allocate the UP lane to the highest
priority among them. The packets of the other active flows,
either use DOWN, or are kept at the VOQs. For all flows of
priority l, lower than the HIGHEST supported, the algorithm is
conservative when it uses UP: we want to keep the UP queue
usually empty, so that a packet of priority higher than l, that
arrives later at the input, is able to go through UP without
experiencing the delay of traffic with priority l. Whenever
HOL blocking appears in any of the two queues, or buffer
hogging appears at UP, the mechanisms of SQP apply. Thus,
Alg-2B-ADAPT can also return SpUP, meaning that the flow
is eligible but only to send a special packet UP.

4) 2B-ADAPT Algorithm: We assume the following data
structures at each input, for each output; the number of flows
corresponding to this pair is L, the number of priority levels.
Two bits for each flow f , FQ [f ], indicating whether the most
recently sent and still pending packet of this flow was sent UP
or DOWN, or NONE (if f has no pending packet). Similarly,
PackUP [f ] counts the number of f ’s pending UP packets;
and TimeUP [f ] keeps track of the time that has elapsed
since the input started transmitting the oldest pending UP
packet. Finally, two registers, EffPr [UP] and EffPr [DOWN],
estimate the “effective” output-priority of UP and DOWN
respectively, by keeping track of the highest pending priority
in the corresponding queue; when no packet is pending UP or
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if ( MaxDownEq[ l ] and DOWN[ p ] ) return DOWN;
if ( MaxDownHigher[ l ] ) return NONE;

MaxDownLower[ l ]:= True iff EffPr[ DOWN ] lower l
MaxUpHigher[ l ]:=

MaxUpLower[ l ]:=
MaxDownEq[ l ]:= True iff EffPr[ DOWN ] equal l

EffPr[ DOWN ] equal NONE

similarly

similarly
OR

EffPr[ DOWN ] equal NONE

EffPr[ DOWN ] equal NONE
OR

OR

MaxUpEq[ l ]:= similarly
UP[ p ]:= True iff Credits[UP] >= p.size
DOWN[ p ]:= True iff Credits[DOWN] >= size

MaxDownHigher[ l ]:= True iff EffPr[ DOWN ] higher l

(d)

case UP:  

switch (FQ[ f ])
case NONE:  

case DOWN:  
if ( MaxDownHigher[ l ] )

begin
if ( MaxDownHigher[ l ] 

if ( L equals LOWEST)

(a)

(b)

endcase

endcase

 begin

else return NONE;
end

else if( UP[ p ] ) return UP; 

  else return NONE;

 if( DOWN[ p ]  return DOWN;
  else return NONE;

return NONE;

if ( L equals HIGHEST) 
begin

if ( UP[ p ] ) return UP; 
else if ( MaxUpLower[ l ])

return NONE;
return DOWN;

if ( not UP[ p ] ) return NONE;

if ( MaxDownEq[ l ] and DOWN[ p ] )

( MaxUpLower[ l ] or MaxUpEq[ l ] ) )

if ( MaxDownLower[ l ] )
if( MaxUpHigher[ l ] )

TD

MD

Kif (  ( PackUP[ f ] <     or TimeUP[ f ] < RTT ) and(i)
(ii)

return UP; 

else
 if ( DOWN[ p ] )

(c)

 return NONE;
endcase

endswitch

  else  

end

return SpUP; 
else return NONE;

HIGHEST priority

LOWEST priorityINTERMEDIATE priorities

NOTATION

else if (MaxUpLower[ l ])   return SpUP;

end
else   return NONE;

return DOWN;

return NONE;

return DOWN; 
and DOWN[ p ] )

Fig. 18. Alg-2B-ADAPT policy for: (a) LOWEST priority; (b) HIGHEST priority; (c) Intermediate priorities. (d) Notation. (The lines in italics correspond
to alternatives policies (i.e., TD and MD) and are not activated in 2B-ADAPT.)

DOWN, the respective register equals NONE9.
Suppose that a packet p, from flow f with priority l, is pro-

cessed by Alg-2B-ADAPT. As fig. 18(a,b) shows, the HIGH-
EST supported priority, l= 0, is mapped only UP whereas,
the LOWEST, l= L��, is mapped only DOWN. Intermediate
priority levels can be mapped either UP or DOWN –fig. 18(c).

5) Justification: Like SQP-opt, 2B-ADAPT never maps a
packet to a queue where packets of higher priority are pending.
When this blocking is applied to a packet, p, with priority l,
which otherwise would be mapped DOWN, it seems to be
even more reasonable than the analogous blocking performed
by SQP-opt: in 2B-ADAPT, when higher priority packets
are pending DOWN, probably even higher priority levels are
queuing UP; thus, contention among packets of priority higher
than l at the output corresponding to p is even more probable,
than it is when SQP-opt similarly blocks packet p, due to
packets of priority higher than l that are pending at the single
crosspoint queue.

Regarding intermediate priorities, when (a) FQ [f ] equals
NONE, i.e., f has no pending packet, 2B-ADAPT first tries

9When we compare priorities, the NONE value for EffPr [fUP,DOWNg]
translates either as HIGHEST, or as LOWEST –see fig. 18(d)

to map p DOWN, but if it finds that EffPr [DOWN] is lower
than l, it tries to map it UP, to save the delay of the packets
pending DOWN. When (b) FQ [f ] equals DOWN, 2B-ADAPT
will use only the DOWN lane; this property, combined with
the discipline at the output, ensures in-order transmission of
packets within a flow –see appendix 2B-ADAPT & In-Order
Transmission.

Finally, (c) when FQ [f ] equals UP and credits exist for p
to go UP, p is found eligible as UP only if:

PacketUP [f ] � K or TimeUP [f ] � RTT (i); and
EffPr [UP] � l (ii),

i.e., no flow of priority l�, higher than l, is using UP; otherwise
p is considered as ineligible. We use criterion (i) in order to
keep the UP queue relatively empty, and (ii) to reserve the UP
lane for level l�, assuming that the arrivals of packets within a
flow exhibit temporal locality. In 2B-ADAPT, K is set equal
to one (�).

Special packets are sent to resolve buffer hogging in the UP
queue; it makes little sense to send special packets DOWN,
since when a packet, p, is blocked from using DOWN due to
lower priority packets that occupy the DOWN buffer space,
the algorithm will try to sent p UP. Special packets are sent
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Fig. 19. Example of 2B-ADAPT method with four priority levels. Only the VOQs corresponding to a single crosspoint x are presented; only crosspoint x
is presented and the corresponding output scheduler.

when (1) a packet p should be mapped UP but (2) the flow-
control constraints the transmission of p and (3) the UP queue
drains with lower priority than the priority of p, l.

Note that if we permitted packets to queue at the crosspoint
behind higher priority packets, then it could happen that UP
drains with priority l, but some packets, P , near the tail of
UP, have lower priority than l. In this case it would be more
appropriate to examine the priority of the packet at the tail of
the UP queue (i.e. the packet that was more recently sent from
the input side toward the corresponding UP queue), in order
to decide if we must sent a special packet.

6) 2B-ADAPT Example: In fig. 19, we present some exam-
ples of the mapping function performed by Alg-2B-ADAPT.
Consider the flows that arrive at input i and go to output j.
Focus on fig. 19(a); the flow of the HIGHEST priority (i.e.,
red) is eligible to send a red special packet UP, since UP drains
with lower priority (i.e. green) and the UP crosspoint queue
cannot contain two MxPS packets. The LOWEST priority (i.e.
cyan) is marked as ineligible, since it can use only the DOWN
queue, but a higher priority packet is pending DOWN. The
green intermediate priority is also considered ineligible. This
happens because, FQ [green ] equals UP, but criterion (i) fails,
i.e. the time that has elapsed since the green packet pending
UP started to be transmitted from the input exceeds the RTT.
The blue intermediate priority is mapped DOWN, since FQ
[blue ] equals DOWN.

In fig. 19(b), the packet at the red VOQ will not cause
UP to overflow, so the red priority is mapped UP; this does
not hold for the green MxPS packet. The packet at the green
VOQ, would be otherwise eligible as UP, since criteria (i)
and (ii) hold. Since UP contains drains with green priority,
it is pointless to send a green special packet UP; so green is
considered ineligible. Regarding the blue priority, FQ [blue ]
equals UP, but (ii) fails since a higher priority packet (i.e.,
green) started using UP; so blue is marked ineligible. Finally,
cyan is eligible to use the DOWN queue.

An irregular but legal behavior is exhibited in fig. 19(c).
There, the blue packet (i.e., priority l=2) pending UP, p�,
must have been sent from the input before the green packet
(i.e., higher priority than blue) pending DOWN (p�) was:
otherwise, p� would be marked as ineligible. A possible
scenario explaining how this can happen has as follows. A
cyan packet, p	, was pending DOWN when p� was sent from
the input: otherwise, p� would be either sent as DOWN (if no
packet was pending DOWN when p� was sent from the input),
or would be considered ineligible (if p	 had higher priority
than p�). The output scheduler selected p	 while the header of
p� was still in it’s way traveling to the crosspoint: otherwise
the output scheduler would select p� before p	. Before p�
was sent DOWN from the input, the credit corresponding to
p	 arrived, and thus the DOWN queue became empty. Hence,
when Alg-2B-ADAPT considered packet p�, it found that no
packet is pending DOWN and sent p� as DOWN; and now,
the DOWN queue contains a packet (p�) of higher priority
than the packet contained UP (p�). The mapping of packets
to crosspoint queues, as would be performed by 2B-ADAPT
now, is shown in the respective figure.

5.3. 2B-ADAPT Alternative Input Policies

1) 2B-ADAPT-K=n: Observe that criterion (i) is somehow
loose, since the size of packets varies considerably when
the switch manipulates variable-size packets internally. It is
interesting to examine how to adapt the criterion (i), when
fixed-size cells are transmitted internally.

In 2B-ADAPT, we set K equal to 1, in order to prevent
congestion from the UP lane, and thus reduce the delay of the
higher priority levels. Other values for K are also possible;
in the next section (2B-ADAPT-noRTT), we show that the
distribution of the size of the packets and the RTT value of
the switch should be taken under consideration when selecting
K. We name the respective policies as 2B-ADAPT-K=n, where
n is the value of K. In the simulations that we performed, we
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observed that by increasing K the higher priority levels receive
higher average delay.

2) 2B-ADAPT-noRTT: If we do not include the “TimeUP
[f ] � RTT” condition in criterion (i), (policy 2B-ADAPT-
noRTT –in short, noRTT) then an intermediate priority flow,
which uses the UP lane and sends small packets, may not be
able to reach full link rate. For instance, if f sends MnPS
packets and K is less than RTT �LR

��MnPS
, then noRTT will bound

f ’s rate to LR
� . The noRTT policy limits the number of packets

that are pending UP, and thus, normally, reduces the delay of
the higher priorities. Through simulations we observed that
noRTT has actually better performance than 2B-ADAPT under
the synthetic traffic patterns that we used, but we decided
to include the RTT parameter in the default version of the
algorithm, since we consider that this potential blocking can
be harmful, especially, since in many cases, high priority flows
consist of small packets, for example when high priorities are
used for network or TCP control packets.

3) 2B-ADAPT-TD: In either case when criteria (i) or (ii)
fail, instead of blocking p, we can try to send it DOWN (policy
2B-ADAPT-TD –in short, TD) –see TD marker in fig. 18.
Similarly to policy noRTT, 2B-ADAPT-TD has the potential
to reduce the delay of the higher priorities – remember that
while FQ [f ] equals DOWN, f cannot use UP. However, the
TD policy can be unjustifiably rushy and aggressive if it causes
packets that were queued DOWN to be upgraded to priority
l, because TD send p as DOWN while criteria (i) or (ii) had
failed:

Normally, (1) the UP queue will drain before DOWN
starts receiving service. ( This hypothesis is based to that the
effective priority UP will be equal to l� or l, when (ii) or only
(i) fail respectively, whereas, the effective priority of DOWN
will be normally l after p is enqueued in it, since the effort of
the algorithm is to keep the lower active priorities DOWN.)
Hence, before p reaches the HOL of DOWN, (i) and (ii) will
probably not fail any more. In this case, p would be able to go
through the UP lane with similar or smaller delay and without
upgrading any other packets. Furthermore, (2) the failure of
either criterion indicates congestion at level l or higher within
the crossbar, that can delay p in spite of the priority upgrades.
In case (2) is true, sending p DOWN can also cause future
buffer hogging or HOL blocking, if in the meanwhile that p
is queuing DOWN, packets of priority higher to l appear at
the input for the same output. Alg-2B-ADAPT simply blocks
p, until no packet is pending UP, when (ii) fails, or until one
credit for f is received, when only (i) fails.

4) 2B-ADAPT-MD: Another policy that we examined ac-
tivates the code lines in fig. 18 marked MD. The medium-
priority-down policy (or 2B-ADAPT-MD –in short, MD) maps
a packet, p, DOWN when (1) FQ [f ] equals NONE, and (2) l
is higher than EffPr [DOWN] and lower than EffPr [UP]. 2B-
ADAPT simply blocks p in this case. Policy MD has similar
advantages and disadvantages with policy 2B-ADAPT-TD.

Through simulations we verified that these alternatives can
reduce the delay of the HIGHEST priority, but at the expense
of intermediate priorities experiencing considerably higher

delays.

6 . IMPLEMENTATION COST

Currently we are in the process of designing our methods
in ASIC designs, in order to verify their feasibility and to
discover possible patches in our algorithms, that may be
imposed by the hardware implementation. We expect to have
gate counts, area, timing and power estimates soon; these will
be published in an separate appendix of this report.

6.1. Computing the Effective Priority

The only special circuits required by SQP and 2B-ADAPT
inside the crossbar chip are these that compute the effective
priority of crosspoint queues. If the inputs do no sent packet
of priority l toward a queue, Q, with effective priority higher
than l, like in SQP-opt and 2B-ADAPT, then one register
maintaining the highest priority, under all packets currently
inside Q , suffices. We name this register as priority-register,
in short PR.

This register is updated every time a packet, p, is enqueued
in Q: we compare the priority of p, l, with the value stored in
the respective PR register, and if it is higher or equal we set
PR equal to l; when Q becomes empty, PR is reseted to the
lowest priority (i.e., L � � value). The output scheduler uses
the PR registers to select one among the non-empty crosspoint
queues.

If packets are allowed to queue behind packets of higher
priority, like in SQP, then a FIFO-like structure is required
at each crosspoint queue to properly compute it’s effective
priority: when the currently highest priority packet leaves the
queue, we have to remember which is the next-highest priority
packet, under all the packets that are inside the queue. Hence,
either we have to traverse the queue that stores the actual
packets, or we have to maintain the next-highest priorities of
the packets inside the crosspoint queue, in a separate FIFO-
queue.

6.2. Reducing 2B-ADAPT Complexity – 2B-ADAPT-RS

Regarding the complexity of Alg-2B-ADAPT, observe that
it must run at packet arrivals or departures, and at credit
arrivals, i.e., before or after scheduling at the inputs (see
section 3.5 ). At a packet arrival or departure, Alg-2B-ADAPT
has to process a single flow; at a credit, c, arrival, it must
compute the eligibility of L flows, i.e., those that can utilize c;
so the throughput of the circuit implementing Alg-2B-ADAPT
must be higher than L + 2 computations per MnPS time.

Thus, in 2B-ADAPT, it is even more imperative to incor-
porate an RS like discipline, since the eligibility of a flow
is not simply a flow-control check, like it is in SQ or SQP
schemes, but requires the intervention of the Alg-2B-ADAPT
algorithm. We are currently considering how exactly to match
this optimization in the 2B-ADAPT context. With the RS
optimization, only one circuit inside each ingress line-card
implementing the Alg-2B-ADAPT policy will suffice, if its
throughput is equal to three operations every MnPS time.

More generally, the idea is to keep the throughput of the
circuit lower than L�� computations per MnPS time, and to
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neglect some flows considering them as ineligible for service
at the input, until the Alg-2B-ADAPT circuit process them.
The good think with RS, is that it neglects flows starting from
the lower priority ones, and thus, reserves the lanes to the
active flows of the highest priority.

Getting more into the details of the Alg-2B-ADAPT algo-
rithm, note that it is structured by a switch-statement and few
comparisons between small values, e.g. 5 bits each, assuming
32 priority levels; depending on the priority level of the packet
processed (i.e., HIGHEST, INTERMEDIATE, LOWEST) and
on the FQ value (i.e., UP, DOWN, NONE), only a small
piece of the code in fig. 18 is executed. Note that the Alg-
2B-ADAPT function is coded redundantly in fig. 18, in order
to help the reader to understand the policy. In hardware it can
be made much more efficient, especially if we exploit parallel
execution or pre-computation techniques; such techniques will
normally increase the silicon area, but will also increase the
throughput of the circuit and will decrease its latency.
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7 . SIMULATIONS

7.1. Simulation Environment & Models

We created an event-driven simulator to experiment with
our methods –for information regarding the structure of the
simulator, see also appendix Simulator Architecture. In this
report, we simulate a 32�32 switch with port speed 10 Gb/s.
For simplicity we assume no internal packet-header and thus
no speed-up; a 4 byte internal-header, would necessitate to
employ 1.1� speed-up at the interface between the ingress
line-cards and the crossbar chip.

The VOQs and the crosspoint queues implement cut-
through. The RTT is set equal to 400ns (i.e., 500 byte time at
10Gb/s), resulting as the sum of the following delays: (1) 100
ns propagation delay and 32 ns transfer delay (i.e., equal to a
MnPS time) before a credit, c, which is generated inside the
crossbar chip, reaches the input; (2) 30 ns scheduling delay
at the input (i.e., just lower than a MnPS time) plus 76 ns
memory access delay at the VOQs and 100 ns propagation
delay, before the header of a packet, p, that used c at the
input, reaches the crosspoint; (3) 30 ns scheduling delay at
the crossbar output, before p starts being transmitted on the
output lines.

A reasonable assumption regarding the 100 ns propagation
delay is that it includes 60 ns time-of-flight on the interconnect
between the crossbar-chip and the ingress line-cards (i.e.,
around to 18 meters distance), plus 40ns interfacing and
pipeline delays within the chips.

We explicitly model variable-size packet arrivals. Unless
otherwise commented, the size of each generated packet is
always selected independently, using a Pareto distribution:
average-packet-size (in short, AvPS) 400, MnPS 40 and MxPS
1500 (bytes). The output destinations of the packets are
uniformly distributed to output ports, and all priorities arrive
with equal probability. We use this uniform assignment of
packets to priority levels, since it stresses the HOL blocking
and the buffer hogging behavior.

Regarding the arrival patterns, we use Poisson packet ar-
rivals, where packets’ interarrival times are exponentially dis-
tributed, and also a bursty traffic model, Bursts60, where each
burst consists of sixty (60) back-to-packet packets. Given that
the size of each packet within a burst is selected independently
through the aforementioned Pareto distribution, the resulting
burst-size distribution is long-tailed with average close to
23 KByte. The idle periods in Bursts60 are exponentially
distributed and the packets within a burst have the same
destination and the same priority. Bursts60 is a synthetic
pattern that tries to model worst-case, real traffic scenarios,
i.e., situations that can occur under the erratic nature of real
network traffic.

We plot packets’ average delay just-before-output-service,
or equivalently packets’ average waiting-time, for each priority
in separate, versus the aggregate input load; we present plots
only for the most interesting priority levels (p0 stands for the
HIGHEST). Note that the duration of a 64Byte cell/segment on
10 Gb/s link equals 0.0512 usec, and reversely 1 usec equals
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19.531 cell durations.

7.2. Comparisons with OQ and Cell Switching

1) OQ vs MQDB: We start by comparing the MQDB
architecture with 2 KByte buffer space per crosspoint queue,
to the pure output queuing system (in short, OQ). In the OQ
model, the output queues are organized per input and per
priority level, and they have infinite size. Note that we have set
the minimum packet delay in the OQ system close to RTT/2
(i.e. 200 ns), assuming that packets are generated at the ingress
of the switch and are transmitted using cut-through toward the
output ports.

We also present the performance of OQ, computed using
the theory of non-preemptive, priority scheduling, that can be
found in [27]. This theory for M/G/1 queues (i.e., Poisson
arrivals and arbitrary service time distribution) shows that the
average delay of priority level l, D l depends primarily on
the input load of priority levels l�, higher or equal to l. Dl

loosely relates to the load (rm) of a lower level, m, through
the delay that a priority l packet, which just became eligible,
can experience due to an ongoing transfer of a packet with
priority m; the impact of such events on the delay of high
priority flows depends on the aggregate input load and on the
packets’ service-time distribution, i.e., on the distribution of
the size of the packets.

Applying the respective formulas in [27] for the OQ system
and for the Pareto packets’ size distribution that we use, we
find that:

Dl �
��������

P
l

l���
rl��

P
L

m�l��
rm�

���
P
l
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P
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usec.

As diagram 20 shows for four priority levels, the analyt-
ical model perfectly matches the simulated OQ system. It
also shows that at input loads up to 0.94, MQDB performs
identically to OQ. At higher input loads, small discrepancies
occur, that are more prominent for the higher priorities; these
can be attributed to the two non-preemptive schedulers that
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each packet has to pass in MQDB, and to small inefficiencies
of MQDB relative to OQ (input queuing vs output queuing).

2) Packets vs Cells: In this experiment we compare the
performance of the MQDB switch, with that of a CICQ
system, with the same queuing organization as MQDB at the
crosspoints, but which segments packets into fixed-size cells in
the ingress and reassemblies in the egress line-cards; we name
this system as FX-XBAR. In the FX-XBAR model we assume
64 byte cells, and we use speed-up factors (in short, SP) 1.0,
1.2, 1.6 and 2.0�. The buffer space per crosspoint queue is
set equal to RTT�IR, where IR stands for the internal line
rate, i.e., LR�SP. Finally, the scheduling delay is set equal to
one cell time –in short CT, i.e., 64byte/IR–, and the credit rate
per input port is set equal to one credit every CT. All other
parameters are the same as with MQDB.

Diagram 21 compares MQDB with FX-XBAR under four
priority levels and Poisson arrivals. As the diagram shows,
FX-XBAR-1.0� saturates near 0.9 load where all priorities
perform purely. This is primarily due to the segmentation
overhead which increases the load that must be handled by
the switch core. In FX-XBAR-1.6�, the average delay of p0
is not affected by the input load but is still higher than in
MQDB: by contrast with MQDB, in the FX-XBAR, the delay
of a p0 packet, p, includes one transfer delay of p (toward
reassembly).

Normally, non-preemptive scheduling has lesser impact on
the delay of high priorities with cell switching than with
variable-packet-size switching: a high priority packet that now
becomes eligible at the input or the crossbar-output scheduler,
cannot not be delayed by more than one CT waiting for an
ongoing, lower priority, transfer to end; in MQDB it may wait
up to a MxPS time. Note, that this does not hold in the egress
line-cards of FX-XBAR, where the reassembled packets are
served non-preemptively.

Finally observe that by measuring packets’ waiting time,
we favored FX-XBAR: if two p0 packets arrive at time t from
different inputs in an idle FX-XBAR, the smaller one will be
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Fig. 22. 1 priority levels Uniform Poisson arrivals.

reassembled firsts, due to smaller transmission delay, and thus
will be served first; no such bias is evident in the MQDB
system. It is well known though, that a smaller-packet-first
server reduces packets’ average waiting time.

In the experiment corresponding to diagram 22 we used
uniform Poisson arrivals and a single priority level, i.e., no
priority discrimination; it contains plots for the FX-XBAR
switch with several speed-up factors denoted as FX-1.0, FX-
1.4, FX-1.6 and FX-2.0�, for the OQ switch, and for the
variable-packet-size CICQ switch, that we propose in this
report, employing 2 KByte per crosspoint, denoted as VAR-
SIZE in the diagram. We can see that the VAR-SIZE switch
outperforms the FX-XBAR for any of the speed-up factor that
we used, and is very close to the OQ system. This is a very
interesting results, since much effort is paid nowadays in the
CICQ switches transmitting cells, like the FX-XBAR model
does.

In [16] we show through simulations, that the variable-
packet-size crossbar presented in this report, with no speed-up,
performs similarly to the iSLIP switch with speed-up 2.0�; it
performs much better than the iSLIP switch, when the latter
employs lower speed-up values.

7.3. Evaluating our Methods

1) MQDB vs Shared Buffer/Queue: Here, we examine the
performance of MQSB, MQSB-RS, SQ, SQP, SQP-RS and
SQP-opt, all with crosspoint buffer space equal to 2 KByte.
To model MQSB (see sec. 2.2), we use a single credit counter
at each input for each corresponding crosspoint, that counts
for the available space (2 KByte) of all logical queues in that
crosspoint. In an actual MQSB system, memory fragmentation
could worsen performance.

In diagram 23 we compare MQDB, MQSB, SQ and SQP-
opt under Poisson arrivals and four priority levels; we see
that at 0.81 input load, SQP-opt and MQSB perform close
to MQDB while SQ cannot discriminate well low from high
priority traffic: this is due to HOL blocking. With increasing
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load, all systems except MQDB downgrade similarly with SQ;
in SQP-opt this happens at lower load than in MQSB, but
MQSB downgrades more sharply at higher input loads, i.e.,
near 0.97: this is due to buffer hogging.

Diagram 24 compares SQP-opt with SQP and SQP-RS
under the same traffic as before. It shows that SQP-opt assigns
lower delay to levels fp0, p1, p2g compared to SQP –f5, 8,
20g and f8, 12, 25g usec respectively, at 0.99 input load–,
while p3 receives almost the same service. Under this traffic
pattern, SQP-RS performs almost identically with SQP.

In diagram 25, where we compare MQDB, MQSB, SQP-opt
and SQP under Bursts60 arrivals, performance degradation in
all shared-memory systems is apparent, and the superiority of
SQP-opt compared to SQP is more evident. At low load (i.e.,
0.5 to 0.7), MQSB performs better than SQP and SQP-opt
since it employs multiple queues that eliminate HOL blocking,
and buffer hogging is not harmful when the crosspoints’
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buffers are relative empty; it performs much worse than the
SQP systems at higher input load, where the crosspoint buffers
fill more frequently.

Finally, for diagram 26 we used the same bursty traffic
model and we present plots for MQSB-RS, MQSB, SQP-
RS and SQP. We can see that the RS discipline improves the
performance in both the MQSB and the SQP system at high
input load: SQP-RS assigns the lowest p0 average delay among
all systems, followed by SQP and MQSB-RS. Regarding the
p1 priority level, SQP-RS and the MQSB systems perform
almost identically, while SQP performs worse. MQSB assigns
lower average delay than SQP-RS to priority level p2.

2) MQDB vs 2B-ADAPT: Following, we examine the per-
formance of 2B-ADAPT, with 2 KByte buffer space assigned
to each crosspoint queue. Diagram 27 is with four priority
levels and Poisson arrivals. It compares MQDB, with 2B-
ADAPT and with MQSB-4K, i.e., the MQSB system with
4 KByte buffer space at each crosspoint. We used MQSB-
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Fig. 27. 4 priority levels (p0 HIGHEST), Poisson arrivals. Y axis in logscale.
MQSB-4K plots start at 0.8 load.
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Fig. 28. 4 priority levels (p0 HIGHEST), Bursts60 arrivals. MQSB-4K plot
starts at 0.8 load

4K instead of MQSB, since the MQSB-4K system requires
the same amount of memory with 2B-ADAPT. As we can
see in the diagram, 2B-ADAPT performs almost identically to
MQDB, while MQSB-4K degrades at input load higher than
0.95.

Next we compare the same systems under Bursts60 arrivals,
again with four priority levels. As we can see in diagram
28, at input load higher than 0.8, the 2B-ADAPT plot has
discrepancies relative to that of MQDB; these discrepancies
grow with increasing load, but never exceed 50% –p0 average
delay 18 vs 12 usec at 0.99 load. MQSB-4K again performs
much worse at high loads.

Diagram 29 is for eight (8) priorities and Poisson arrivals. It
compares 2B-ADAPT to MQDB and to 2B-ADAPT-K=2, i.e.,
an alternative 2B-ADAPT policy that sets the K parameter
in criterion (i) equal to two –see section 5.3.1 . The diagram
shows that 2B-ADAPT and 2B-ADAPT-K=2 perform similarly
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Fig. 29. 8 priority levels (p0 HIGHEST), Poisson arrivals. Y axis in logscale.
2B-ADAPT-K2 plots start at 0.8 load.
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Fig. 30. 8 priority levels (p0 HIGHEST), Bursts60 arrivals. 2B-ADAPT-TD
plot starts at 0.8 load

under this scenario. Compared to MQDB, 2B-ADAPT exhibits
negligible discrepancies that are observable only at input load
higher than 0.85: the maximum discrepancy under all priorities
is near 15%, i.e., p0’s average delay, 0.8 vs 0.7 usec, at 0.99
load. Under Bursts60 arrivals, the 2B-ADAPT-K=2 policy
assigns higher average delay to all high priority level, than
the default 2B-ADAPT (diagram 30). In general, we observed
that increasing K worsens performance, regarding the three or
four highest priority levels.

Diagram 31 compares 2B-ADAPT to MQDB and to 2B-
ADAPT-noRTT under eight priorities and Bursts60 arrivals;
it shows that the noRTT alternative of 2B-ADAPT policy
reduces the delay of all high priorities compared to the default
2B-ADAPT. Compared to MQDB, the maximum discrepan-
cies occur at the average delay of priority p0: 75% and 35%
in 2B-ADAPT and in noRTT respectivelly, at 0.99 load. Re-

c� ICS-FORTH, TECHNICAL REPORT 325, OCT. 2003 26



5

10

20

30

40

50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

D
E

LA
Y

 (
us

ec
)

LOAD

"MQDB_p:0"
"2BADAPT_p:0"
"2BADAPT_noRTT_p:0"
"MQDB_p:1"
"2BADAPT_p:1"
"2BADAPT_noRTT_p:1"
"MQDB_p:2"
"2BADAPT_p:2"
"2BADAPT_noRTT_p:2"
"MQDB_p:3"
"2BADAPT_p:3"
"2BADAPT_noRTT_p:3"
"MQDB_p:5"
"2BADAPT_p:5"
"2BADAPT_noRTT_p:5"

Fig. 31. 8 priority levels (p0 HIGHEST), Bursts60 arrivals. 2B-ADAPT-
noRTT plot starts at 0.8 load
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Fig. 32. 8 priority levels (p0 HIGHEST), SynthBackb arrivals. Y axis in
logscale.

garding lower priority levels, the corresponding discrepancies
are considerably smaller (less than 33%). A noteworthy point,
relative to section 5.3.2 , is that in the average case, the noRTT
policy will not bound flows’ rate, if K� AvPS � RTT�LR.

Next we use a synthetic traffic pattern, SynthBackb, that
tries to emulate as much as possible backbone, realistic IP
traffic. In summary, under the SynthBackb pattern, the packet
arrivals at an input line-card are generated by multiplexing
thousands of interactive (IC) and bulk (BC) “conversations”
in a FIFO queue; an IC is modeled as a Poisson process that
sends 125 packets with size 40 to 44 bytes, while BC as a
burst with average size 8 KByte [16].

Diagram 32 contains plots for MQDB, 2B-ADAPT and 2B-
ADAPT-TD under SynthBackb arrivals and eight priority lev-
els; each generated conversation is independently mapped to
one level, using a uniform distribution. The diagram shows 2B-
ADAPT to perform very close to MQDB. The TD alternative
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Fig. 33. 8 priority levels (p0 HIGHEST), Bursts60 arrivals. 2B-ADAPT-TD
plot starts at 0.8 load
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Fig. 34. 8 priority levels (p0 HIGHEST), Bursts60 arrivals. 2B-ADAPT-MD
plot starts at 0.8 load

policy performs very poorly compared to 2B-ADAPT, for the
reasons described in section 5.3.3 : TD dramatically increases
the delay of all priorities except p7.

Under Bursts60 and Poisson arrivals we found that 2B-
ADAPT-TD and 2B-ADAPT-MD (see section 5.3.4 ) perform
better than 2B-ADAPT regarding p0 and p7 and worse for all
other priorities; diagrams 33 and 34 demonstrate this behavior
under the bursty traffic model, concerning the TD and MD
alternative policies respectively.

3) Imbalanced Destinations: Finally we consider the im-
balanced traffic pattern, where each input port, i, has a distinct,
“favored” output port, j, e.g. j � i; with probability 0.5 a
packet that arrives from input port i is destined to output port
j, whereas, the rest of the packets are uniformly distributed
to the remaining outputs. Diagram 35 is for eight priority
levels and the aforementioned imbalanced traffic model for
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2B-ADAPT plot starts at 0.8 load

Bursts60 arrivals (all packets within a burst have the same
destination); we present plots for MQDB and 2B-ADAPT. As
we can see, even under this non-uniform model, 2B-ADAPT
does not degrade considerable. Diagram 36 is again for eight
priorities, Poisson arrivals, and the imbalanced destinations
distribution. It shows that the higher priority levels in 2B-
ADAPT do not degrade considerably compared to MQDB;
though, the lower ones do degrade, but this is due to that large
crosspoint buffers are required to reach high throughput under
this imbalanced traffic pattern –see section 3.7.2 –, and it is
not very related to priorities handling. By employing a more
sophisticated scheduler at the inputs or at the crossbar outputs
in place of the simplistic FQ that we currently employ, or by
increasing the buffer space of the crosspoint buffers/queues
–remember that MQDB has 4 times more buffering–, we
consider that these discrepancies will be reduced.

CONCLUSIONS

We presented a novel variable-packet-size, multiple-priority
CICQ switch. We demonstrated that this switch architecture,
with no internal speed-up, can provide very good performance
comparable only to that of practical input-queued systems that
employ speed-up higher than two. Although we compared it
only with a fixed-size cell crossbar, the reader can examine the
literature regarding buffered crossbars, to make the respective
comparisons with unbuffered input-queuing architectures. We
also proposed methods employing a minimal number of lanes
at each crosspoint, (i.e., one or two) which effectively support
multiple priority levels. Our results indicate, that implementing
more than two crosspoint lanes does not worth the associated,
high incremental cost, since our system with two such lanes
performs very close to the ideal system which employs a
separate crosspoint lane for each priority: under a worst case
scenario the maximum relative discrepancy is 75% whereas,
in the typical case it is only 15%. Finally, we demonstrated
that the only considerable incremental cost of our methods is
located in the ingress line-cards.
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APPENDIX

Simulator Architecture

1) Events: We have created an event-driven simulator to
evaluate the performance of the proposed architecture under
variable-size packets load. The simulator was built from the
scratch in C++ code. We decided to create our own code for
the creation/handling of events, instead of using some standard
event-driven simulator (e.g. C-SIM) so that we can optimize it
for the purposes of our project. In addition, building upon the
events handling and ordering methods of a black box simulator
can sometimes turn to be frustrating, especially when you lack
the necessary experience.

The resulting simulator uses a single event-heap to dispatch
and schedule events; the event-heap is implemented as binary
tree from the standard C++ template. In order to reduce
execution time, we tried to minimize the number of events
that are generated by the transmission of a single packet,
without compromising the accuracy of the simulator. The
execution time is proportional to:

#PKTS� max [ log ( E [ #PKTS IN SYSTEM ] ), N� ]

The most important types of events that we have used are:
� PACKET ARRIVAL: signals the arrival of a new packet

at an ingress line card
� CREDIT ARRIVAL: signals the arrival of a credit in the

ingress line card
� PACKET ARRIVAL AT CROSSPOINT: notifies that the

header of a packet arrived at a crosspoint
� PACKET TRANSMISSION ENDED: notifies that the

transmission of a packet on a crossbar line ended
� SCHEDULING START: marks the start of a new

scheduling operation/phase at a contention point
� SCHEDULING ENDS: marks the end of a scheduling

operation, and also the time when the operations associ-
ated with the transmission of the selected packet start.

2) Time Ordering & Events Handling: The event-structure,
contains a type-id, a module-id signifying the modules (i.e.,
the input and/or output port) that are associated with the event,
and of-course a time-field that holds the time when the event
must occur. Events are fetched from the event-heap in non-
decreasing order with respect to their time-field. All concurrent
events are dispatched and are directed, in random order, to the
appropriate module for a first-hand processing.

Modules’ state variables, which are not affected by the
order that events are handled, are updated in this phase.
State variables that are subject to race conditions are not
updated during this phase, since the order that concurrent
events are first-hand processed is actually arbitrary. In the
presence of such an event, the associated modules switch into
an intermediate state; after all concurrent events are first-hand
processed the simulator checks which modules might need to
change critical state and calls the appropriate routines.

This two phase handling of events maintains causality and
helps debugging. Assume for instance that a credit, c, arrives
at the ingress line card i, at simulation time t; before t, the
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Fig. 37. The system controller; focus on the structure of the credit controller
used in the simulation.

only flow with non-empty VOQs was flow f , which, also,
is interested for credit c. Additionally, suppose that the link
controller is idle at time t, i.e., no packet is being transmitted
toward the crossbar from input i. This CREDIT ARRIVAL
event triggers the controller at input i to increment the credit
counter of the respective flow during the first phase, since this
variable is not subject to race conditions.

But scheduling in input i is not performed during this phase,
even though the c credit might be responsible for f becoming
eligible. If scheduling was performed and f was selected, then
the link controller at input i would switch into BUSY state
during this first phase. But if a PACKET ARRIVAL event,
concurrent to the credit arrival, had not been yet processed
when the scheduler switched into the BUSY state, then this
event (i.e., a new packet arrival at input i) would not have
been taken under consideration by the scheduler. At any case
the scheduler’s decision would depend on the order that these
concurrent events were processed.

In order to maintain causality, when the
CREDIT ARRIVAL event is first-hand processed by the
controller at the input link, the controller enters the
TO SCHEDULE state and only after all concurrent events
are processed, the simulator re-awakes the controller to start
scheduling. So the simulator handles events in two phases, in
the same fashion that many hardware description languages
do (see fig. 14).

3) Simulator Components: The simulator for the buffered
crossbar contains the following core modules:

� Input Controller: performs the operations of an ingress
line card

� Output Controller: performs the operations that occur at
a column (output) of the crossbar-chip

� Credit Controller: manages the credits that are pending
inside the crossbar

There are N –equal to the port number– instances of input,
output and credit controllers that operate independently of each
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Fig. 38. The data structures in an input controller.

other.

An input controller maintains the models for the VOQs and
the VPS FIFOs; also, it contains the structures required for
flow control operation, i.e., the credit counters and the PSS
FIFOs. Statistics regarding the state of the crosspoint buffers
that are fed by an input (packets no yet acknowledged, their
size and priority etc.) are also maintained by the associated
input controller, in accordance to the particular scheme. The
input controller is responsible for queuing and scheduling
packets at the VOQs, subject to flow control. We assume that
it is an autonomous part of the ingress line card, responsible
for the transmission of packets toward the crossbar.

An output controller maintains the crosspoint buffers and
queues in a column of the crossbar 10. Different schemes that
we explore in this paper have different number of buffers and
different queuing organization at the crosspoints. Scheduling
and forwarding toward the output lines are performed by the
output controller. In addition, the output controller informs the
credit controllers for the credits generated by the transmission
of packets on the corresponding crossbar’s output.

A credit controller maintains the queues that store credits
that are pending inside the crossbar chip; it is also responsible
for the scheduling and the transmission of the credits toward
the input controller. Separate credit queues per input, output
port and per priority level have been modeled, but we have
mostly used only the per input port partitioning. Unless
otherwise commented, we assume a FIFO with unlimited
capacity inside the crossbar chip, at the interface of the chip
with every ingress line card, which stores the credits generated
from the queues at the corresponding crosspoints. In addition,
we assume that the write/read rate to each separate credit

10For a hardware implementation, it is probably more functional to distin-
guish the crosspoint entity and build a separate controller for the crosspoints,
instead of incorporating them inside the output controller [16].
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Fig. 39. The data-structures in an output controller.

queue is N+1 credits-messages per MnPS time. Credits are
send from the crossbar chip toward each ingress line cards,
by a separate interface (i.e., lines/cables in an actual system),
than packets are; the bandwidth of this interface is a parameter
in our simulations.

In configurations where speed-up is employed, a separate
output controller is needed to emulate the operation of the
egress line cards. Operations of this controller include per flow
queuing, reassembling and scheduling/forwarding of packets
on the external output lines. Currently we use internal speed-
up only at configurations where fixed-size-cells are transmitted
internally into the switch. In these configurations we assume
that the reassembly buffers have infinite capacity –no flow
control between the crossbar chip and the egress line cards
is implemented–, and we use non-preemptive strict priority
scheduling combined with simple pointer-based RR; the latter
discipline is used to brake priority ties, i.e., to select one flow,
when multiple flows of the same priority are eligible (i.e.,
have at least one complete packet at their reassembly queue)
for service.

Additional system modules are the following:

� Traffic Controller: generates the packet arrivals at an input
port

� Events Controller: responsible for dispatching the events
from the events-heap and for routing them to the appro-
priate modules

� System instantiates and integrates the aforementioned
controllers

There are N traffic controllers –one for each input port of the
crossbar–, one events controller and one system controller.
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APPENDIX

.1. 2B-ADAPT & In Order Transmission

With adaptive assignment of packets to crosspoint queues,
packets belonging to a single flow can potentially departure
from the switch out of order. Alg-2B-ADAPT and all of its
derivatives never sent as UP a packet of a flow that has packets
pending DOWN. Thus, the only case that reordering can occur
is when a packet, p�, is sent UP and afterward, before p� is
transmitted on the output lines, a packet p� from the same flow
is sent DOWN; this is permitted only under the 2B-ADAPT-
TD policy. 2B-ADAPT-TD may sent p� as DOWN when p�
is pending UP, only if the DOWN queue has equal or lower
effective priority than the priority l, of p� and p�. We have to
prove that p� cannot depart from the DOWN queue before p�
does, and we will do so by contradiction.

Suppose that p� leaves from the DOWN queue before p�
leaves from the UP. Since the output scheduler selects from
the UP when both queues have equal effective priority –fig.
40(a)–, the only case that this can occur is if the effective
priority of the DOWN queue changed while p� was still in it.
This means, that a packet, z�, with priority l� higher than l,
was sent as DOWN from the input after p� was, and before
p� started leaving the UP crosspoint queue. Let g denote the
flow that z� belongs to.

If at the time when z� was sent from the input, (1) FQ
[g] equaled NONE, then the algorithm would try to sent z�
only as UP, since at this time, a lower priority packet, p� was
pending DOWN; so this cannot have been the case –fig. 40(b).

If (2) FQ [g] equaled DOWN, then, at the time when z� was
selected, an other packet of flow g was pending DOWN. The
interesting case is if this packet z	, was sent DOWN before
p�, otherwise z	 takes the place of z� in the proof. In this
case, p� could not have been sent as DOWN, since packet z	
would still be pending in that queue, and thus the effective
priority of DOWN would be higher than l –fig. 40(c).

Finally if (3) FQ [g] equaled UP when z� was sent DOWN,
then this would mean that at that time, a packet, z	, belonging
to flow g, was pending UP. One of the following conditions
must be true; (a) z	 was sent UP before p�. In this case, our
hypothesis says that z	 was still pending UP when the p� and
p� reached the crosspoints; so p� could not have be sent as
UP at the first place, with any of the policies that we examine
–fig. 40(d); (b) packet z	 was sent UP after p�; again, our
inductive hypothesis tells us that z	 must have reached the
UP queue before p� started to departure from UP; but then,
the effective priority of UP would have been changed into l �

before p� departed from DOWN, so p� could not be have
been sent before p�, since the output scheduler would first
select p� from UP and afterward p� from DOWN because
both queues would have equal effective priority, l � –fig. 40(e
). This completes the contradiction since we found no way
that p� can departure from the switch before p� does �.
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