
Variable-Size Multipacket Segments
in Buffered Crossbar (CICQ) Architectures

Manolis Katevenis and Georgios Passas ∗

Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH)
ICS-FORTH, P.O. Box 1385, Vassilika Vouton, Heraklion, Crete, GR-711-10 Greece

http://archvlsi.ics.forth.gr/bufxbar/ - {katevenis,passas}@ics.forth.gr

August 2004

Abstract— Buffered crossbars can directly switch variable size
packets, but require large crosspoint buffers to do so, especially
when jumbo frames are to be supported. When this is not feasible,
segmentation and reassembly (SAR) must be used. We propose a
novel SAR scheme for buffered crossbars that uses variable-size
segments while merging multiple packets (or fragments thereof)
into each segment. This scheme eliminates padding overhead,
reduces header overhead, reduces crosspoint buffer size and is
suitable for use with external, modern DRAM buffer memory
in the ingress line cards. We evaluate the new scheme using
simulation, and show that it outperforms existing segmentation
schemes in buffered as well as unbuffered crossbars. We also
study how the size of the maximum segment affects system
performance.

Keywords— switches, routing, crossbar, segmentation, simula-
tion.

I. INTRODUCTION AND RELATED WORK

Crossbars are the building blocks for modern switching fab-
rics and router systems. Traditional crossbars were unbuffered
–with buffering provided only on the ingress and egress line
cards– hence transmissions over the crossbar ports had to be
synchronized with each other, leading to the use of fixed-
size segments (cells). Recently, buffered crossbars, which
have small buffers at their crosspoints (CICQ – combined
input-crosspoint queueing), have emerged as an advantageous
architecture, mainly due to their scheduling efficiency [1] [2]
[3] [4] [5] [6]. A subsequent observation was that buffered
crossbars can directly switch variable-size units [1] [7]. In [8]
we studied the details of such a buffered crossbar operating
directly on variable-size packets, without first segmenting
them into fixed-size cells; this eliminates packet reassembly
at the egress line card, as well as the need for speedup
to cope with segmentation and reassembly (SAR), thus also
eliminating egress queueing, and, overall, greatly reducing cost
or increasing port speed. This architecture [8], however, has
two limitations which we seek to remedy in the present paper.

First, for switch operation without SAR, the required buffer
size per crosspoint, as shown in [8], is at least one maximum-
size packet plus one round-trip-time (RTT) worth of data; Ref-
erence [8] assumed 1500-byte maximum packets (old ethernet

∗ The authors are also with the Dept. of Computer Science, University of
Crete, Heraklion, Crete, Greece.

300300

300 300160 160

160 16080

40 40

5 segments, S 256 B
160256

80

80

40
44

80

256

256 B3 segments, S

40 40

6464646464646464646464

704 bytes

80

580 bytes
11 segments, S = 64 B

256256 256 256

580 bytes768 bytes
3 segments, S = 256 B

(d) Variable−size Multipacket seg.

(c) Variable−size Unipacket seg.

(b) Fixed−size Multipacket segments

(a) Fixed−size Unipacket segments

68

Fig. 1. Four packets in a flow, of sizes 80, 160, 300, and 40 bytes respectively,
as they traverse a crossbar under four different segmentation schemes.

limit) and RTT ≤ 500 B, thus using 2 KByte buffers. For a
32×32 switch, the resulting silicon area is expensive in current
technologies; hence, for the high port-count switches of the
next few years, it is desirable to limit buffer size per crosspoint
to probably 1024 bytes or less. Second, when “jumbo frames”
(ten or more KBytes per packet) are to be switched without
SAR, the required buffer size is very large, thus limiting port
count below a dozen or so.

This paper examines buffered crossbars that use SAR in
order to overcome one or both of the above limitations. We in-
troduce a novel segmentation scheme that exploits the buffered
crossbar capability to switch variable-size units, thus avoiding
the speedup requirements of traditional SAR schemes. This
novel scheme, variable-size multipacket segments, is illustrated
in Fig. 1(d), and is the combination of two existing schemes,
(b) and (c). Fig. 1 first reviews the existing segmentation
schemes; for simplicity, we do not show the per-segment
headers, used for the routing inside the crossbar:
(a) Fixed-size Unipacket segments : this is the traditional
segmentation scheme. Each segment contains a single packet
or fragment thereof. Segment size is fixed, so the last segment
of a packet often contains useless padding bytes. This overhead
is the first disadvantage, because it requires crossbar speedup
(i.e. port speed must be lower than crossbar speed, often by
as much as a factor of 2 to 3). Segment size is usually small,
in order for the (quite frequent) minimum-size (40-byte) IP

c©ICS-FORTH, August 2004 1

120 120160 160

1 B S

280 bytes
(b)

280 bytes

S 256 B40 B

(a) 24
240256

256 B

40

Fig. 2. (a) Naive segmentation; (b)ensuring 40-byte minimum segment size.

packets not to incur excessive padding overhead. This small
segment size is the second disadvantage, because it requires
high scheduler rate (which is a problem in centrally-scheduled
unbuffered crossbars); additionally, it increases the relative
overhead of per-segment headers.
(b) Fixed-size Multipacket segments [9] [10] (“envelopes”)
[11] (“cell-merging”): packets that share a common destina-
tion (belonging to the same flow) are packed inside segments,
contiguously one after another; each segment may now contain
one or more packets or fragments thereof. Segment size can
now be increased, thus relaxing scheduler rate and reducing
header overhead. In order to control the padding overhead,
especially given the larger segment size, partially filled seg-
ments are held in the input queues until more packets arrive or
until a timer expires or excessive bandwidth is available. The
disadvantages are increased delay until segments are filled,
and the padding overhead needed whenever partially filled
segments are transmitted due to timer expiration.
(c) Variable-size Unipacket segments [1]: assuming a
buffered crossbar, segments can have a variable size. This
eliminates padding overhead. Unipacket segments were used in
[1], so scheduler rate and header overhead were not reduced;
additionally, this scheme is not well adapted to the use of
DRAM for ingress line card buffering (section II).
(d) Variable-size Multipacket segments : this is the novel
segmentation scheme introduced and evaluated in the present
paper; it is the combination of (b) and (c). Variable-size
segments eliminate padding overhead, like (c); thus, unlike (b),
packets don’t need to wait for segments to fill up. Multipacket
segments reduce header overhead and average scheduler rate,
like (b). Peak scheduler rate can still be high, when partially
filled segments are released. Unlike [1], we bound peak
scheduler rate by imposing a minimum segment size, as shown
in figure 2(b).

We assume a minimum segment size equal to the minimum
(IP) packet size (40 bytes), so that no waiting is required to
fill a segment with a single 40-byte packet; buffered crossbar
scheduling is simple and efficient, so a 40-byte scheduling time
is reasonable. Because segments are multipacket, all segments
but the last two in a queue have a fixed size, unlike (c). This
fixed segment size is large enough, so peak DRAM throughput
can be achieved; hence our scheme is suitable for line cards
with DRAM buffers (section II-A).

Following the above discussion of related work, the rest of
this paper is organized as follows. Section II describes the
overall system architecture, precisely defining our scheme,
and focusing on the ingress line card and DRAM buffer
organization; we show that transmitting multipacket segments

B
uf

fe
re

d
C

ro
ss

ba
r

Ingress Datapath

Header Proc.

DRAM Buffer

In
gr

es
s

(s
ub

−)
 P

or
t(

s)

Egress

E
gr

es
s

(s
ub

−)
 P

or
t(

s)

Datapath

SRAM SRAM

Fig. 3. Overall datapath architecture.

to the crossbar simplifies the ingress packet buffers. Section
III presents the results of our simulations, comparing the
performance of our scheme to that of previous schemes, and
studying how segment size affects system performance. An
interesting point is that satisfactory performance is achieved
with a crosspoint buffer size of just one (maximum) segment
size, unlike [8] where that buffer size should be one maximum
packet size plus one RTT worth of data.

II. SYSTEM AND LINE CARD ARCHITECTURE

Crossbar chips usually operate in connection with line cards,
in an overall system as illustrated in Fig. 3. We are concerned
with the datapath of the system; header processing may occur
on the same or in other chips. Each block in the figure
corresponds to a single chip, except for the “SRAM” blocks
which are assumed to be inside the datapath chips. As usual
in combined input-crosspoint queueing (CICQ) architectures,
the largest queues are on the input side, consisting of virtual-
output queues (VOQ) residing in the ingress datapath; the
buffers in the crossbar hold small queues, and rely on back-
pressure (credit flow control) to avoid overflow [8]. Because
input queues may grow large, most switch and router systems
include off-chip DRAM in the ingress datapath to provide
adequate buffer capacity for these VOQ’s.

Output queues exist and may grow large in systems that use
crossbar speedup. When buffered crossbars operate directly
on (variable-size) packets, output queues can be eliminated
altogether [8], so the egress datapath could be null. In the
present system, an egress datapath chip is needed to provide
segment-to-packet reassembly; additionally, it is needed if
multiple egress sub-ports are to be provided. However, in the
lack of crossbar speedup, the required buffer capacity for both
purposes is limited, so on-ship SRAM should suffice, avoiding
off-chip buffers.

DRAM buffer memory on the ingress side is responsible for
a major portion of system cost, in terms of chips, pins, and
power consumption; its throughput may often constitute a ma-
jor performance bottleneck, especially when it has to support
short-packet accesses. Our scheme expressly eliminates short-
segment DRAM accesses; it also streamlines external memory
traffic so as to ensure peak DRAM throughput utilization, as
explained next.

A. Ingress Linecard Queueing Architecture

The virtual-output queues (VOQ) in the ingress datapath
are implemented as linked lists consisting of fixed-size data
blocks and the block size equals the maximum segment size;

c©ICS-FORTH, August 2004 2

V
 O

 Q
 ’s

SRAM

D
R

A
M

 b
uf

fe
r

of
f−

ch
ip

In
gr

es
s

P
or

t(
s)

to
 C

ro
ss

ba
r

Ingress Datapath Chip

fixed−size blocks

max. segment size = 1 block

variable−size segments

Fig. 4. VOQ datapath in the ingress line card.

see Fig. 4. Arriving packets are classified, then written into the
proper VOQ. Packets in a VOQ are written contiguously one
after another, as in the fixed-size multipacket configuration
(Fig. 1(b)). Notice that fixed-size blocks are only used in
the ingress datapath for memory management purposes –when
transmitted through the crossbar they are converted to variable-
size segments. The worst-case memory space waste due to
partially filled blocks is one block per VOQ.

A VOQ can reside partly in the SRAM on-board the ingress
datapath chip, and partly in the off-chip DRAM, as in [13].
Tail blocks must be in the SRAM, while other blocks can
be in the DRAM. All transfers to and from DRAM occur
at block granularity1. Block size should be chosen to ensure
peak DRAM throughput all the time. For a typical modern
SDRAM buffer providing 45 Gb/s of aggregate throughput, a
block size of 512 bytes will ensure full throughput utilization2.
Such a 512-byte block size, in our system, entails a 512-
byte maximum segment size, which in turn demands 512-byte
crosspoint buffers (section II-B); this is a comfortable size for
modern buffered crossbars [8].

Iyer e.a. [13] assumed that all VOQ’s have their tail and
their head blocks in SRAM, while their middle blocks migrate
to DRAM. By contrast, our SAR scheme allows the head
blocks to remain in DRAM until ready to be switched, at
which time they can move directly from DRAM to crossbar,
as illustrated in Fig. 4; this halves SRAM occupancy. The
reason is that all segments but the last two in a queue have a
fixed size, equal to the maximum segment size, hence equal
to one DRAM block (Fig. 1(d) and 2(b)).

Another optimization relative to [13] is to allow low-
occupancy VOQ’s (such as the bottom queues in Fig. 4) to
reside entirely in SRAM; this reduces DRAM throughput
by twice the aggregate throughput of the flows that bypass
DRAM. High-occupancy VOQ’s must use DRAM to avoid

1often, DRAM block content will be “aligned” with SRAM block content,
and the queue tail portion in the SRAM will start at block boundaries, as
illustrated in Fig. 4. However, this is not always the case: in Fig. 2(b), where
block size is 256 bytes, assume that the 240-byte segment departs to the
crossbar, and, while the 40-byte segment is delayed, the queue grows and its
head has to migrate to DRAM; then, 256-byte chunks from the queue head
will migrate, and these chunks will not be aligned to SRAM block boundaries.

2e.g. [14]: 128-bits wide × 200 MHz DDR = 51.2 Gb/s -10% turn-around
overhead -2% refresh overhead; each block is laid out as four 128-byte
sub-blocks, with each sub-block residing in a separate DRAM bank; bank
interleaving with 8-word (4-clock) bursts per bank provide peak throughput.

overflowing the SRAM; each such VOQ only needs up to two3

tail blocks in the SRAM, while the rest of them can migrate
to DRAM.

B. Segment Size Adaptivity

While memory management for the queues in the line card
datapaths uses fixed-size multipacket blocks, as in Fig. 1(b),
traffic is forwarded to the crossbar in variable-size multipacket
segments, as in Fig. 1(d). When a segment is forwarded to
the crossbar, a crossbar-specific header is prepended to it,
containing the crossbar output port ID and the segment length;
in our performance evaluations (sec. III), we assumed a 4-
byte size for this header. The crossbar buffers and forwards
the segment as a unit, ignoring the structure of its contents; in
particular, the crossbar does not know the location of packet
boundaries, if any, inside the segment. As explained in section
I and figure 2, segment sizes (excluding their header) range
between a minimum value, normally equal to the minimum
packet size, and a maximum value4, normally equal to the
DRAM transfer block size (sec. II-A).

The crossbar-specific per-segment header represents an
undesirable overhead for crossbar throughput purposes. To
minimize the effects of this overhead, we prefer most segments
to have a large size relative to this header. If all segments had
40-byte minimum-IP size, the overhead would be a sizeable 10
percent; if most segments are above 200 bytes, the overhead
is reduced below a comfortable 2 percent.

The segmentation scheme introduced in this paper has a nice
adaptivity property with respect to the above overhead. Under
light load, most segments contain a single packet, because
packets are forwarded as soon as they arrive. Hence, small
packets, which occur frequently in the Internet, generate small
segments, which entail higher overhead; However, because
the traffic is light, the increased overhead does not matter.
Under heavy load, on the other hand, queue occupancy grows;
when queue size exceeds one or two blocks, segment size is
maximized, due to the multipacket nature of segments. Hence,
under heavy traffic, the overhead is minimized and the crossbar
operates very close to the maximum efficiency. In conclusion,
the crossbar speedup that is needed for line-rate operation
under uniform traffic5 corresponds to the minimum value of the
overhead, i.e. just 1 to 2 % with 512- or 256-byte maximum
segments.

C. Crosspoint Buffer Size

Buffered crossbars operating directly on variable size pack-
ets need a crosspoint buffer size of at least one round-trip
time (RTT) worth of data plus one maximum-size packet
in order to achieve line-rate operation under single active
flow and worst-case packet size conditions [8]. Worst-case

3two tail blocks need to stay in the SRAM in case their occupancy is as
in Fig. 2(b) and the corresponding segments have to depart to the crossbar
before any new packet arrives and is added to them.

4assumed to exceed twice the minimum value
5unbalanced traffic is known to require additional speedup, for orthogonal

reasons, though; see section III-D.2

c©ICS-FORTH, August 2004 3

conditions are: alternating maximum-size M and small-size
S packets, where S < RTT but M + S > bufferSize,
hence credit is insufficient for both an M and an S packet in
the crosspoint. The same effect can occur with variable-size
unipacket segments (Fig. 1), thus requiring a buffer size of
one RTT plus one maximum-size segment.

By contrast, the segmentation scheme introduced in this
paper yields line-rate operation under single active flow and
all packet size conditions with a crosspoint buffer size of just
the maximum of one RTT worth of data or one maximum-size
segement. The reason is that when queue occupancy grows
under heavy load, the packets, independent of their sizes, are
merged into maximum-sized segments, and the crossbar only
sees a traffic consisting of such fixed-size units. Under such
traffic, a buffer size of just one maximum-size segment suffices
(provided it is also larger than one RTT worth of data).

D. Egress Queueing and Reassembly

The egress datapath chip collects segments until a full
packet is reassembled for transmission. We assume that packet
transmission to the egress port starts when the segment that
contains the tail of the packet starts arriving from the crossbar;
that is, we assume cut-through operation at the last-segment
level. Cut-through operation, at the segment level, is also
assumed inside the crossbar, as in [8].

For simplicity and economy, no flow control is needed
from the egress line cards backwards: the output schedulers
in the crossbars are assumed to operate at egress line rate6.
A memory space of N × P × MaxPktSize per egress port,
shared among the reassembly queues, ensures that reassembly
buffers do not overflow; N is the number of ingress line cards
and P is the number of priority levels (queues) supported.

III. PERFORMANCE EVALUATION

A. Simulation Environment

In order to verify our system we have developed an event-
driven simulator in C, operating at a byte time granularity.
Except for the buffered crossbar architecture with variable-size
multipacket segments (mps CICOQ), we have also modeled
the following systems for comparison purposes:

- the buffered crossbar switching variable size, unipacket
segments (ups CICOQ)(see Fig. 1(c)),

- the bufferless crossbar operating on fixed-size, multi-
packet segments (mps CIOQ)(see Fig. 1(b)),

- ideal output queueing architecture (OQ), as a reference
system.

In our experiments we assume 32-port switches with the
round trip time between the ingress linecards and the switch
fabric being 500 byte times (which we claim is a reasonable
number including propagation delays, scheduling times and
memory accesses).

Every segment forwarded to the crossbar chip has a 4-byte
header prepended to it. However, the crossbar lines operate at

6to support egress sub-ports, one needs per-subport VOQ’s, and: either per-
subport flow control from egress to ingress line card, or per-subport crosspoint
buffers and output schedulers.

the speed of external lines, i.e. no speedup is considered. A
single priority level is assumed.

The reported delay is averaged over all packets, unless
otherwise mentioned. We define the delay of a packet to be
the time interval between its first byte arriving to the ingress
and its first byte departing from the egress linecard, excluding
any constant delays such as propagation times.

For the bufferless crossbar, we consider the iSLIP schedul-
ing algorithm with five iterations [16]. A VOQ sends a request
to the scheduler if its backlog is greater or equal to the segment
size. Otherwise, it requests a matching only in case a fixed time
interval has passed since the last time it held a partially filled
segment. This interval is controlled by a timer. Reference [11]
includes details concerning the timer operation for the case
that the segment size equals the minimum-size packet. For
the buffered crossbar we assume round-robin service at all
contention points: inputs, crosspoints and outputs.

B. Traffic Models

In our simulations we have used the following traffic
models :
[-] Synthetic1500Max traffic : A synthetic workload
resulting from the statistical multiplexing of several streams
of packets that simulate application level conversations, such
as Telnet or WWW browsing. The distribution of packet
size in this mixture is 64% 40-byte packets, 18% 552 or
576-byte packets and 18% 1500-byte packets. The traffic is
uniformly destined or unbalanced, according to [4]. Bursts
of similarly-destined packets at the sub-flow level, simulate
Pareto-sized application level messages. We first used this
traffic model in [8], where more details can be found.
[-] Synthetic&JumboFrames traffic : We aimed to test our
system with ethernet Jumbo Frames, as well, so a synthetic
workload similar to the previous one, but with maximum IP
packet size extended to 64KB was also used. The distribution
of packets in this mixture is 95% 40-byte packets and 5%
packets with size following the bounded Pareto distribution
with minimum = 1.5KB, maximum = 64KB, and mean =
10KB. The traffic is uniformly destined.
[-] MinPkt traffic : A traffic stream consisting of constant-
minimum-size IP packets (40 bytes) with exponentially
distributed interarrival times. The destination output ports are
uniformly selected.

C. Multipacket segments in CICOQ vs. CIOQ

We explore the performance aspects of the mps CICOQ
and mps CIOQ architecture compared to the ideal OQ. We
simulated mps CIOQ for various timer values and 512-byte
envelopes. For the mps CICOQ system we assume 512-byte
maximum segment size and 512-byte crosspoint buffer. We fed
the systems with the uniform Synthetic&JumboFrames traffic;
the results are presented in Fig. 5. For the OQ cut-through is
considered at the output queues, which reduces delay at low
loads. On the other hand, our system requires the storage of all
the fragments of the packet but the last one. This contributes

c©ICS-FORTH, August 2004 4

input load

CIOQ − iSLIP

CICOQ

10x 1x

OQ

(b
yt

e
tim

es
) .inf

m
ea

n
qu

eu
ei

ng
 d

el
ay

timer = 100 x (segment size) byte times

10

100

1000

10000

100000

1e+06

1e+07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. Buffered crossbar with variable-size multipacket segments.
Unbuffered crossbar with fixed-size multipacket segments, 5 iterations
iSLIP. Segment size is 512B, crosspoint buffer size is 512B. Syn-
thetic&JumboFrames traffic.

to a reassembly delay offset which is obvious mostly at light
loads. mps CIOQ adds, further to the reassembly delay offset,
the timer interval delay. In Fig 5 we observe that the timer
interval must be long in order to prevent the release of partially
filled envelopes at high loads and as a result the delay at low
loads increases too.

D. Multi vs. Unipacket segments in CICOQ

1) Delay Experiment: In order to verify our adaptivity
hypothesis (section II-B), we measured the mean packet delay
for the mps CICOQ and the ups CICOQ system, when MinPkt
traffic arrives at the switch input ports. In both cases, the
buffer at crosspoints is 520 bytes 7 and the maximum segment
size is 512 bytes. Fig. 6 depicts the results. We observe that,
as expected, the ups CICOQ system saturates at a load of
40

44
= 91%, because the internal header is added to minimum-

size packets-segments. However, in the mps CICOQ system
the header is added to maximum-size segments and thus the
system is stable for all loads up to 512

516
= 99%. Note that

the above (worst-case) scenario is important, considering that
today the minimum-size packets constitute a large portion of
the real world IP traffic [17].

2) Throughput Experiment: We used the unbalanced Syn-
thetic1500Max traffic and measured the switch throughput for
the mps CICOQ and the ups CICOQ system; we assume 512-
byte maximum segment size, while crosspoint buffer size is 1
or 2 maximum segment sizes. The results are presented in Fig.
7. Observe that the throughput of ups CICOQ with buffer size
= 512B is a decreasing function of the unbalanced probability.
The reason is that alternating small-large packets in our work-
load create alternating small-maximum size segments inside
the crossbar. So, as the unbalanced probability increases, each
output is loaded by mostly a single input, the phenomenon
explained in section II-C takes place and switch throughput

7ups CICOQ needs 13x40=520B buffer space because 12x40 is less than
the assumed RTT (500 byte times).

input load

multipacket segments

unipacket segments

m
ea

n
qu

eu
ei

ng
 d

el
ay

 −
 4

0B
 p

ac
ke

ts
 o

nl
y

 (

by
te

 ti
m

es
)

0

2000

4000

6000

8000

10000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Fig. 6. Buffered crossbar with variable-size multipacket and unipacket
segments. Maximum segment size is 512B, crosspoint buffer is 520B. MinPkt
traffic.

unipacket
segments

segments
multipacket

1024 bytes

512 bytes

1024 bytes

unbalanced probability

sw
itc

h
th

ro
ug

hp
ut

crosspoint buffer size = 512 bytes

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

Fig. 7. Buffered crossbar with variable-size multipacket and unipacket
segments. Maximum segment size is 512B, crosspoint buffer size is 1 or
2 maximum segment sizes. Unbalanced Synthetic1500Max traffic.

is reduced. The performance of the mps CICOQ is close to
the respective one of the buffered crossbar when the traffic
consists of fixed size cells and 1 cell crosspoint buffer is used
[4]. Observe that when the unbalanced probability is 1, i.e.
each output is 100% loaded by a single input, our system
yields full output utilization. When crosspoint buffer size is
1024B, i.e. one maximum-size segment plus the round trip
window, the ups CICOQ achieves satisfactory performance,
but the mps CICOQ is still superior.

E. Performance as a function of maximum segment size

The choice of the maximum segment size in the
mps CICOQ system actually affects several performance fac-
tors. Increasing the size of the maximum segment,

i) we reduce the overhead of the internal header addition.
ii) we reduce the packet reassembly delay and thus the total

packet delay.
iii) we increase the delay for small packets, due to the larger

segments being transmitted ahead of them, at the VOQs
or the crosspoint buffers.

c©ICS-FORTH, August 2004 5

256B

512B

128B

1024B

input load

m
ea

n
qu

eu
ei

ng
 d

el
ay

 (
by

te
 ti

m
es

)

100

1000

10000

100000

1e+06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 8. Buffered crossbar with variable size multipacket segments. Maximum
segment size is 128, 256, 512 or 1024B. Crosspoint buffer size equals max-
imum segment size. RTT equals maximum segment size. Synthetic1500Max
traffic.

Obviously by increasing the segment size we also increase the
cost of the crossbar chip. We experimented with the uniform
Synthetic1500Max traffic. In Fig. 8 we verify the hypothesis
(ii); we assume the crosspoint buffer size is one maximum
sized segment and, especially for this experiment, the round
trip time between the ingress linecard and the crossbar chip
is equal to the transmission time of a maximum segment. In
Fig. 9 we verify the hypothesis (iii). We consider two segment
sizes : 80 and 1024 bytes. In both cases the crosspoint buffer
is 1024 bytes. Hypothesis (i) is verified in Fig.8 and Fig. 9 as
well. Observe that the packet delay at heavy loads increases
as the segment size decreases because the induced internal
header overhead is greater.

CONCLUSION

We presented an innovative segmentation scheme for
buffered crossbar based switches. The scheme combines the
known ability of buffered crossbars to directly operate on
variable-size units and the aggregation of multiple pack-
ets or fragments of them into each segment. We showed
that this scheme is well adapted to the use of DRAM for
ingress buffering, and presented an overall system architecture.
Through simulation we compared our segmentation scheme to
its ancestors and found it superior in terms of packet delay and
switch throughput. Lastly, we studied our system performance
under various maximum-segment sizes.

REFERENCES

[1] D. Stephens, H. Zhang: “Implementing Distributed Packet Fair Queueing
in a scalable switch architecture”, Proc. INFOCOM’98 Conf., San
Francisco, CA, March 1998, pp. 282-290.

[2] M. Nabeshima: “Performance Evaluation of a Combined Input and
Crosspoint Queued Switch”, Proc. IEICE Trans. Commun., vol. E83-
B, no. 3, Mar. 2000, pp. 737-741.

[3] T. Javidi, R. Magill, and T. Hrabik: “A High-Throughput Scheduling
Algorithm for a Buffered Crossbar Switch Fabric” Proc. IEEE Int. Conf.
on Communications (ICC’2001), Helsinki, Finland, June 2001, vol. 5,
pp. 1586-1591.

[4] R. Rojas-Cessa, E. Oki, and H. Jonathan Chao: “CIXOB-k: Combined
Input-Crosspoint-Output Buffered Switch”, Proc. IEEE GLOBECOM,
2001, vol. 4, pp. 2654-2660.

input load

m
ea

n
qu

eu
ei

ng
 d

el
ay

 −
 4

0B
 p

ac
ke

ts
 o

nl
y

(b

yt
e

tim
es

)

segment size = 80B

segment size = 1024B

10

100

1000

10000

100000

1e+06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9. Buffered crossbar with variable size multipacket segments. Max-
imum segment size is 80 or 1024B. Crosspoint buffer size is 1024B.
Synthetic1500Max traffic. Delay measured for small packets only.

[5] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis: “A Four-Terabit
Packet Switch Supporting Long Round-Trip Times”, Proc. IEEE Micro
Magazine, vol. 23, no. 1, Jan./Feb. 2003, pp. 10-24.

[6] N. Chrysos, M. Katevenis: “Weighted Fairness in Buffered Crossbar
Scheduling”, Proc. IEEE Workshop on High Performance Switching and
Routing (HPSR 2003), Torino, Italy, June 2003, pp. 17-22.

[7] K. Yoshigoe, K. Christensen: “A Parallel-Polled Virtual Output Queued
Switch with a Buffered Crossbar”, Proc. IEEE Workshop High Perf.
Switching & Routing (HPSR 2001), Dallas, TX, USA, May 2001, pp.
271-275; http://www.csee.usf.edu/∼christen/hpsr01.pdf

[8] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, N. Chrysos:
“Variable Packet Size Buffered Crossbar (CICQ) Switches”, Proc. IEEE
International Conference on Communications (ICC 2004), Paris, France,
20-24 June 2004, vol. 2, pp. 1090-1096.

[9] M. Katevenis: “Small, Variable-Size Packets in Large Blocks”: exercise
5.2 of course CS-534 (Packet Switch Architecture), Univ. of Crete, March
2000; http://archvlsi.ics.forth.gr/∼kateveni/534/00a/exer/ex5.html

[10] K. Kar, T. V. Lakshman, D. Stiliadis, and L. Tassiulas : “Reduced
complexity input buffered switches”, Proc. HOT Interconnects VIII,
Stanford University, Stanford, CA, August 2000 .

[11] Christensen, Yoshigoe, Roginsky, Gunther: “Performance Evaluation
of Packet-to-Cell Segmentation Schemes in Input Buffered Packet
Switches”, Proc. IEEE Int. Conf. on Communications (ICC’2004), Paris,
France, 20-24 June 2004

[12] A. Nikologiannis, M. Katevenis: “Efficient Per-Flow Queueing in
DRAM at OC-192 Line Rate using Out-of-Order Execution Tech-
niques”, Proc. IEEE Int. Conf. on Communications (ICC’2001),
Helsinki, Finland, June 2001, pp. 2048-2052 (5 pages).

[13] Sundar Iyer, Ramana Rao Kompella, and Nick McKeown : “Analysis
of a Memory Architecture for Fast Packet Buffers” Proc. IEEE High
Performance Switching and Routing (HPSR 2001), Dallas, Texas, May
2001, pp. 368-373

[14] Micron DDR2 SDRAM product dcumentation, available at
http://www.micron.com/products/dram/ddr2sdram/

[15] M. Katevenis: “Fast Switching and Fair Control of Congested Flow in
Broad-Band Networks”, IEEE J. Sel. Areas in Communications, vol. 5,
no. 8, October 1987, pp. 1315-1326.

[16] N. McKeown: “The iSLIP Scheduling Algorithm for Input-Queued
Switches”, Proc. IEEE/ACM Trans. on Networking, vol. 7, no. 2,
April 1999, pp. 188-201; http://tiny-tera.stanford.edu/∼nickm/papers/
ToN April 99.pdf

[17] “Cooperative Association for Internet Data Analysis”;
http://www.caida.org

c©ICS-FORTH, August 2004 6

