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Abstract—We report on the hardware implementation of a
local memory system for individual processors inside future
chip multiprocessors (CMP). It intends to support both implicit
communication, via caches, and explicit communication, via di-
rectly accessible local (”scratchpad”) memories and remote DMA
(RDMA). We provide run-time configurability of the SRAM
blocks near each processor, so that part of them operates as 2nd
level (local) cache, while the rest operates as scratchpad. We also
strive to merge the communication subsystems required by the
cache and scratchpad into one integrated Network Interface (NI)
and Cache Controller (CC), in order to economize on circuits.
The processor communicates with the NI in user-level, through
virtualized command areas in scratchpad; through a similar
mechanism, the NI also provides efficient support for synchro-
nization, using two hardware primitives: counters, and queues.
We describe the block diagram, the hardware cost, and the
latencies of our FPGA-based prototype implementation, which
integrates four MicroBlaze processors, each with 64 KBytes of
local SRAM, a crossbar NoC, and a DRAM controller on a
Xilinx-5 FPGA. One-way, end-to-end, user-level communication
completes within about 30 clock cycles for short transfer sizes.

I. INTRODUCTION

Memory hierarchies of modern multicore computing sys-

tems are based on one of the two dominant schemes –multi-

level caches, or directly-addressable local “scratchpad” memo-

ries. Caches transparently decide on the placement of data, and

use coherence to support communication, which is especially

helpful in the case of implicit communication, i.e. when we

do not know in advance which input data will be needed,

or who last modified them. On the other hand, caches lack

deterministic response time, they make it hard for the software

to explicitly control and optimize data locality and transfers in

the cases when it can intelligently do so, and coherent caches

scale poorly to over hundreds of processors. Scratchpads are

popular in embedded [1] and special purpose systems with

accelerators [2][3], because they offer predictable performance

which is required by real-time applications; they also offer

scalable general-purpose performance by allowing explicit

control and optimization of data placement and transfers.

Explicit communication uses remote direct memory accesses

(RDMA); it is efficient, and it becomes possible in the cases

when the producer knows who the consumers will be, or when

the consumer knows its input data set ahead of time. Recent

advances in parallel programming and runtime systems [4][5]

allow the use of explicit communication with minimal burden

to the programmers, who merely have to identify the input

and output data sets of their tasks.

Our goal is to provide unified hardware support for both im-

plicit and explicit communication. To achieve low latency, we

integrate our mechanisms close to the processor, in the upper

cache levels, unlike traditional RDMA which is implemented

at the level of the I/O bus. We provide configurability of the

local SRAM blocks that are next to each core, so that they

operate either as cache or scratchpad, or as a dynamic mix

of the two. Configurability is at run-time, to allow different

programs with different memory requirements to run on the

same core, or even different stages of a program to adapt the

underlying memory to their needs. We also strive to merge

the hardware required by the cache and scratchpad into one

integrated Network Interface (NI) and Cache Controller (CC),

in order to economize on circuits.

To this end, we propose a simple, yet efficient, solution for

cache/scratchpad configuration at run-time and a common NI

that serves cache and scratchpad communication requirements.

The NI receives DMA commands and delivers completion

notification in designated portions of the scratchpad memory.

This allows the OS and runtime systems to allocate as many NI

command buffers as desired, per protection domain, thus effec-

tively virtualizing the NI, while providing user-level access to

its functions, so as to drastically reduce latency. Relative to tra-

ditional NI’s, which used their own, dedicated memory space,

we improve SRAM utilization by sharing the same SRAM

blocks between the processor and the NI, while preserving

high-throughput operation by organizing these SRAM blocks

as a wide interleaved memory. The scratchpad space can be

allocated inside the L1 or L2 caches and consequently the NI

is brought very close to the processor, thus reducing latency.

Our NI also offers fast messages, queues, and counters, as

synchronization primitives, to efficiently support advanced in-

terprocessor communication mechanisms. We assume Global

Virtual Addresses and Progressive Address Translation [6].

This paper describes (in section III) the hardware imple-

mentation, through FPGA prototyping, of such a configurable

level-2 cache/scratchpad, with an integrated CC/NI controller,
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offering virtualized user-level RDMA and synchronization

primitives (an overview of the architecture is given in section

II). We describe the block diagram and we report on the

hardware cost, showing that the merged cache plus scratchpad

uses 20 percent less hardware than the two separate systems,

not counting the economy resulting from the better utilization

of the SRAM space. Performance-wise, one-way, end-to-end,

user-level communication completes within about 30 clock

cycles for short transfer sizes; we analyze the components

of this communication latency (section IV). Related work,

conclusions, and future work appear at the end of the paper.

II. ARCHITECTURE OVERVIEW

Our proposed architecture targets chip multiprocessor sys-

tems with tens or hundreds of processor cores: each core

has at least two levels of private caches and communicates

with shared memory using Global Virtual Addresses [6]. This

section describes run-time configuration of the local SRAM

blocks as cache and/or scratchpad. We explain how scratchpad

memory can be used to support virtualized NI command

buffers, and present our hardware synchronization primitives.

A. Run-time configurable Scratchpad

Scratchpad space in our scheme is declared as a contiguous

address range and corresponds to some cache lines that are

pinned (locked) in a specific way of the cache, i.e. cache line

replacement is not allowed to evict (replace) them.

Scratchpad areas can be allocated inside either L1 or the

L2 caches. Most applications seem to require relatively large

scratchpad sizes, so the L2 array is a more natural choice.

Moreover, L2 caches offer higher degree of associativity, hence

more interleaved banks. Although L2 latency is higher than

L1, the performance loss due to this increased latency is partly

compensated in two ways: (i) our L2 and scratchpad supports

pipelined accesses (read or writes) at the rate of 1 word (at

random address) per clock cycle; (ii) configurable parts of

the scratchpad space can be cacheable in the (write-through)

L1 caches (our current prototype does not yet implement L1-

cacheable scratchpad regions).

As in [6], owing to the use of progressive address trans-

lation, caches and scratchpad operate with virtual addresses,

and a TLB need to be consulted only when going out of

the node (out of L2), through the NI, to the NoC. In lieu of

the processor-TLB, our architecture has a small table called

Address Region Table (ART) which marks contiguous address

ranges either as cacheable or as scratchpad and provides access

rights (protection) for each of them. Every scratchpad word

must be allocated within a cache-line whose low-order bits

(cache index) are compatible with the scratchpad address. On

the other hand, in the multi-way set-associative L2, the above

scratchpad can be freely allocated into any of the cache ways;

the ART identifies the way that is used. Identifying scratchpad

regions in this way using the ART has the following advantage:

a single ART entry can describe a large, contiguous scratchpad

region; then all tags of this region, in L2, are freed (except

for a single “locked” bit, used during cache accesses, when

comparing all tags in a set, to tell the comparators to ignore

this way); in this way the NI can use the tags for its own

purposes (communication state and meta-data).

B. Virtualized user-level DMA

NI command buffers are DMA control areas which are

allocated upon user software demand and reside in normal

scratchpad regions. These buffers share the same ART entry

with normal scratchpad and the distinction is made using a

special bit (cache-line state), located inside tag control bits

(set upon allocation). Any user program can have dedicated

NI command buffers (DMA registers) in its scratchpad region;

this allows a low-cost virtualized DMA engine where every

process/thread can have its own resources. To ensure protec-

tion of the virtualized resources, we also utilize permissions

bits in the ART and demand the OS/run-time system to update

the ART appropriately on context switches. Moreover, the

inherent support for dynamic number of DMAs at run-time,

promotes scalability and allows the processes to adapt their

resources on the program’s communication patterns that might

differ among different stages of a program.

DMAs are issued as a series of store instructions – to

provide the arguments: opcode, size, source and destination

address – destined to words within a marked line, that gradu-

ally fill DMA command descriptors, possibly out-of-order. The

NI uses a command protocol to detect command completion

and inform the DMA engine that a new command is present.

When serving DMAs, the NI generates packets, along with

their customized lightweight headers, that belong to one of

the two primitive categories: Write or Read. The NI carefully

segments the DMAs into smaller packets when they exceed

the maximum network packet size.

Additionally, the NI offers the cache controller a dedicated

set of command registers in order to serve cache needs for

write-backs upon replacements and fills upon misses: the same

mechanisms, and the same Read and Write packets, serve

DMA transfers as well as cache operations.

C. Advanced Interprocessor Communication (IPC) Primitives

In order to achieve more efficient communication between

processors we provide some advanced NI features that offer

additional flexibility to the programmers. We implement Re-

mote Stores to scratchpad regions of remote processors, in

order to optimize the latency of single-word data transfers

[7]; the ART can identify address ranges as remote. We also

provide Remote Queues as an appropriate level of abstraction

for multiprocessor synchronization [8] where fast multi-word

Messages, e.g. data up to cache-line size, from multiple

sources can perform atomic Remote Enqueues. Queues are

hosted inside scratchpad regions and their configuration (size

and pointers) can be programmed in special control lines,

marked in the tags. Messages are initiated through NI com-

mand buffers, already used for DMAs, where data are provided

directly by the processor – no source address is needed.

Finally we implement Counters, also hosted in scratchpad

space, as a primitive to support RDMA completion detection,
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Fig. 1. FPGA Prototype Block Diagram

barriers, and other synchronization primitives. Counters are

initialized with a value (transfer size in bytes) and trigger

writing to notification addresses when they expire (reach zero).

The software can specify an acknowledgement address in NI

commands to identify a counter that will gather all partial

acknowledgements for DMA segments; acknowledgement ad-

dresses are allowed to be “null” to deactivate the mechanism.

III. FPGA-BASED PROTOTYPE AND IMPLEMENTATION

Our hardware prototype is implemented in a Xilinx Virtex-

5 FPGA using four MicroBlaze soft-cores as processors. The

processors are 32-bit, in-order, single outstanding memory ac-

cess, and have a traditional 5-stage pipeline that also supports

single-precision floating point operations. Each processor tile

has a private L1 data cache and a private configurable L2

cache/scratchpad memory tightly-coupled with our NI. At the

moment there are no instruction caches (in progress) and

the code is fetched from instruction scratchpads connected

directly to the processors. The prototype is also equipped with

a 256MByte DDR2 SDRAM which is used as main memory

and is shared between tiles. Communication between tiles and

the off-chip DDR memory controller is achieved through a 32-

bit, 5-port input-queued crossbar switch (XBAR) that applies

round-robin scheduling and has a latency of 3 clock cycles

under light load. The prototype does not yet implement cache

coherence. The operating clock frequency of the system is

currently 75MHz and its block diagram along with the major

components is illustrated in Figure 1.

A. Configurable Cache/Scratchpad Memory

Our prototype implements, in every tile, a private L1 cache

and a private configurable L2 cache/scratchpad; these are

smaller than one would expect in a CMP, due to limited

resources in the FPGA. Usual L1 caches range from 16 to

64 KBytes, 2 to 4 way set associative, with 64-byte lines. Our

implementation has scaled down the L1 caches to 4KB, direct-

mapped, with 32-byte cache-lines. Our L1 cache is write-

through, with 64-bit-wide refills, a single-cycle hit latency, and

follows “no-allocate” policy on store misses. L2 caches, on the

other hand, are usually much larger, with sizes beyond 1MB,

associativity up to 16-ways, and line size up to 128 bytes.

Scaling down again, we have designed a 64 KB, 4-way set-

associative write-back L2 cache with 32-byte lines and 64-bit

wide data banks. Our L2 cache controller supports multiple

hits under a single miss in order to minimize the processor

idle time, and has a single-entry deferred-write buffer which

supports bypassing. The L2 controller serves write-backs and

fills on misses, using the transfer primitives of the tightly-

coupled NI as described in the next subsection.

The key component that allows us to configure and use

parts of the L2 cache as scratchpad is the Address Region

Table (ART); its function is similar to a traditional TLB, but

it provides only protection and type information –not physical

address translation– hence the ART can be smaller than a TLB

(and have no misses), because it can describe potentially huge

regions of the address space using a single entry. The ART

classifies each memory access as one of: (i) cacheable, (ii)

scratchpad, (iii) remote scratchpad, or (iv) tag access (used to

access and set lock bits in L2). The ART is placed in parallel

with the L1 cache, and is probed on every memory access

from the processor. A copy of the ART is also used by the

outgoing and incoming NI. Our current prototype uses only

physical addresses, so we replaced the ART, for the moment,

with a static, hardwired mapping: each L2 data and tag array

in our system has a unique physical address (nodeID and way

number are encoded in the MSBs of the address).

An important issue for the efficient use of scratchpads and

their associated DMAs is the available memory bandwidth.

Scratchpad areas in our design are hosted inside the L2

memory banks and the NI accesses them at high rate when per-

forming DMAs. On the other hand, the default set-associative

cache organization requires all the ways to be probed in

parallel, thus limiting the available memory bandwidth for

the NI and causing conflicts. In order to reduce the memory

bandwidth required by the typical L2 cache operation and use

it more efficiently for NI operations, we implement an L2 way-

prediction scheme at the L1 level – the earliest possible stage

where an L2 cache access is decided.

Many way prediction schemes use the program-counter (PC)

[9] to predict a cache way that will likely hit. In contrast,

we generate short signatures, using the address tag bits, and

perform partial matches [10]. Our scheme uses a table, placed

next to L1, that keeps 8-bit signatures for every L2 cache line.

The 8-bit signatures are generated by applying bitwise XOR in

the address tag bits. Our simulations revealed 99% prediction

accuracy and significant improvement over the case where the

8 LS bits of the address tag are used; 4-bit signatures yield

lower accuracy. Our signatures may produce false positives,

but not false negatives. Comparing the signatures with the

actual address is done in parallel with L1 tag matching, and

a bit-mask is generated to indicate the L2 ways that may hit;

it is used upon L1 read misses and on all writes (L1 is write-

through). Upon L1 miss, the L2 controller probes the possible

ways sequentially to find a hit or declare a miss. The signature

table is updated when L2 misses and evictions occur.
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Fig. 2. Cache/Scratchpad Memory

Our sequential L2 access pattern allows tag arrays to be

placed together, “one under the other”, in a single memory

block, thus economizing on the FPGA memory resources that

are offered in 4 KB blocks. Valid, Locked, and Dirty bits are

maintained in a separate, dual-ported memory block, where

the control bits of all cache-lines that belong to a set are kept

together, in the same memory word. Maintaining all control

bits together allows fast cache-line replacement decisions,

while the second port allows setting the “dirty” bit on back-to-

back stores and loads without blocking (L1 is write-through

thus stores in L2 are very frequent). Our replacement policy

is “random” among non-locked (non-scratchpad) lines. Our

L2 provides a path for the processor to read and write the

tags as random “data” rather than addresses, thus allowing

the processor to set the lock and other control bits that are

required for the NI operation; the ART controls which tag

regions a process is allowed to access, and which ones not.

The L2 data memory is organized in four independent

ways, with two interleaved memory banks per way (a total

of eight memory banks), and offers two architectural ports,

reaching a peak throughput of 128 bits/cycle. The choice

of two banks per way helps reducing the conflicts when

accesses from the processor and the NI happen to target the

same way, e.g. scratchpad accesses concurrently with DMA

operations. The memory ports are shared between incoming

and outgoing NI on one hand, and the processor on the other;

when there is no processor access the two NI paths can use

both ports. Although, the available memory bandwidth allows

more than two architectural ports, the hardware cost of the

required multiplexing circuits is high, and the bank conflict and

arbitration logic creates complex and slow circuits. Our design

benefits from the dual-ported memory blocks that the FPGA

offers (by default) in order to economize on multiplexing

circuits: we emulate 8 single-ported banks using 4 dual-ported

RAM blocks, by artificially refusing to serve simultaneous

accesses to a “would-be” single bank.

Figure 2 presents the datapath and the pipeline of our

design. All memory accesses arriving from the processor are

checked against the ART regions and probe the L1 cache

and way prediction table in parallel. Cache hits are served

normally, while misses, scratchpad, and tag accesses are

forwarded to L2, along with all the control information: type

of access and way mask (prediction for cacheable or one-

hot for scratchpad). Upon reaching L2, the requests pass the

arbitration stage and access tags and data as many times as

required by way prediction and full-tag matches. Scratchpad

loads have a latency of 4 clock cycles while stores take 3 clock

cycles to be committed to memory. The observed processor

latency for stores is 1 clock cycle, since all stores are “posted”

and pipelined in our design.

B. NI Operation and Mechanisms

The NI is tightly-coupled to the L2 cache and serves all data

transfers from/to tile’s configurable memory and the NoC. The

block diagram of the NI is shown in Figure 3. The outgoing

path arbitrates between all sources of outbound traffic and

generates every outgoing packet. The incoming path serves

inbound traffic, stores data in-place and, depending on the type

of traffic (cache or DMA), performs all the necessary steps.

NI Command and Control Lines are allocated on software

demand in cache lines inside scratchpad areas: some of the

free tag bits of locked cache lines distinguish between four

types of such lines:

• Normal Memory: normal scratchpad memory without

side-effects.

c© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures, Modeling, Simulation – IC-SAMOS, Greece, July 2009; pp. 149-156



5

R
T

A

Outgoing NI

to
net

Request

Buffer
Rem St

Buffer
Cmd Wr

Tags

Data

L2

from L1

from L2 cntrl

C
o

m
p

l
M

o
n

it
o

r

AckQ

net
from

Incoming NI

Cache

A
rb

it
e
r

Pending
CmdQ

Fig. 3. RDMA Engine

• Command: they are the analogous of (virtualized) I/O

command registers, and buffer RDMA message send

requests. They are monitored by the command completion

hardware, which triggers the outgoing DMA engine.

• Queue: this cache line contains 4 pointers in its data

words –base, bound, head, tail– describing a queue imple-

mented in a circular buffer, where that buffer is allocated

by software somewhere in the scratchpad outside the

cache line itself. Incoming write packets (e.g from remote

store, message send, or RDMA) are treated by the NI

depending on the type of their destination-address line:

for normal-memory lines, their contents are written there;

for queue-type lines, the packets are enqueued inside the

circular buffer, and the NI updates the tail pointer. The

head pointer is updated under software control.

• Counter: these lines contain a 24-bit counter in the

free tag part, and notification addresses (one, for the

moment) in the data part. Writes to the counter-line

address increment the counter by the (signed) contents of

the (single-word) packet. Upon reaching zero, the counter

triggers the transmission of notification packets to the

notification addresses.

Additionally, the NI serves incoming RDMA-Read requests.

In order to meet the buffering requirements for the incoming

requests, without dedicating a separate memory block, we

require the software to allocate a Read Service Queue, in the

form of a normal queue, and then assign its address to a special

register that is dedicated for this purpose.

NI Commands and Protocol

Commands to the NI are issued as a series of stores to the

data part of Command lines. Our protocol defines two types

of commands: (i) Copy and (ii) Message. Copy descriptors are

DMAs and have a fixed size of four 32-bit words, while mes-

sages have any size up to one cache-line (eight 32-bit words

in our prototype). In order to achieve automatic command

completion, every descriptor should contain its own size (in

bytes) inside the word at offset zero. The first word of every

descriptor contains the following fields: (i) 8-bits descriptor

size (bytes), (ii) 8-bit opcode (copy/message), (iii) 16-bit copy

size (bytes - max 64 KBytes), used only when opcode is

copy. Copy descriptors contain three mandatory arguments:

(a) 32-bit source virtual address, (b) 32-bit destination virtual

address, and (c) 32-bit acknowledgement virtual address. Mes-

sage descriptors contain two mandatory arguments –(a) 32-bit

destination virtual address and (b) 32-bit acknowledgement

virtual address– and up to five optional words that constitute

the actual payload of the message. The NI uses its copy of

the ART to distinguish local source addresses (write-RDMA)

from remote sources addresses (read-RDMA), to validate (for

protection purposes) the address arguments, and to provide

routing information for them through the NoC (our current

prototype only uses physical addresses, hence routing infor-

mation is hardwired in the FPGA design).

Completion Monitor and Write Buffer

The NI includes a monitor circuit for Command lines, and uses

the descriptor size to detect completion of commands, even in

the presence of out-of-order stores, but assuming single-write

of each byte inside the command line. The monitor is activated

when stores arrive to cache-lines marked as Command, and a

bitmap of the already completed bytes is formed and updated.

The bitmap is kept in the free tag bits of these lines and when

the number of consecutive “ones” matches those implied by

the descriptor size, then command completion is triggered.

Upon completion, the address of the command buffer is

enqueued in the Pending Command Queue in order to be

served by the outgoing NI. Since the completion bitmap is kept

in the tags of each associated cache line, the monitor circuit

supports interleaved command issuing (in different command

buffers) offering full virtualization to the software (e.g. when

a thread is swapped out while composing a command).

All NI commands are stored inside scratchpad memory and

thus the outgoing NI has first to read the descriptor contents,

word-by-word from the memory, and then start serving it.

The reading step wastes memory bandwidth and increases

latency. To reduce latency, in the common case where issues

are not back-to-back, we provide a Command Write Buffer,

which is one-cache-line wide, and is placed in parallel with

the memory. When the buffer is free, it holds a partially-

completed command, monitors its progress, and detects its

completion. The NI serves commands in this buffer faster,

since all descriptor arguments are immediately available. The

allocation policy of the write buffer is first-come-first-served;

deallocation happens when the NI completes serving it.

Remote Stores

Store instructions to addresses identified by the ART as being

remote scratchpad, result in network packets carrying write

requests, identical to RDMA or message packets (of size

1 or more words). Stores marked as “remote” are kept in

the Remote Store Buffer, and served by the outgoing NI

engine as soon as it is free. A write-combining mechanism is
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implemented: if multiple remote stores to adjacent addresses

arrive before some previous ones have departed, they are all

coalesced in a single, multi-word-write packet.

Completion Notifications

We assume multi-path (adaptive) network routing, hence the

multiple packets of a large RDMA may arrive out-of-order;

this is not a problem, given that each of them carries its own,

correct destination address, but RDMA completion detection

must now be performed by counting the number of bytes

that have arrived (our network never generates duplicates). We

implement counters to support RDMA completion notification.

Each session, of one or more RDMA operations, uses one

counter (allocated by software). The issuer increments that

counter by the total size of all RDMA transfers. Every RDMA

packet carries the counter address in its acknowledgement

field; upon successful write, the counter is decremented by the

packet size. Assuming that the counter started at zero, when

it reaches zero again we know that all bytes have arrived.

As mentioned above, when the counter reaches zero the NI

automatically sends notification packets to its pre-configured

notification addresses (which may happen to be queues).

Cache Transfer Support

In order to satisfy the communication requirements of the L2

cache, we offer the cache controller a set of registers that are

used for fills and write-backs. This register set includes: (i) an

opcode indicating the command (fill, write-back, write-back-

and-fill), (ii) cache-line address (the unique physical address of

the line: nodeID,wayNo,index) used to get the data for write-

back and as a memory destination for fills (iii) destination

memory address for the write-back, i.e. the full address that is

evicted/flushed, (iv) source memory address for fills, i.e. the

full address requested by a miss. The NI uses these registers

and generates the appropriate packets for requested cache

traffic. The completion of a fill is signaled by the incoming

NI when the response from main memory arrives.

Outgoing NI

The outgoing NI arbitrates between all different sources of

outbound network traffic in strict priority as follows: (i) cache

requests, (ii) acknowledgements, (iii) remote stores and (iv)

messages and copies (first from the Command Write Buffer

and then from the Pending Command Queue). The outgoing

NI generates packets, along with their customized lightweight

headers and CRC checksum, that belong to one of the two

primitive categories:Write or Read. Cache write-backs, remote

stores, acknowledgements, and messages belong to the Write

category (carry data payload and acknowledgement address),

while cache fills belong to Read category (carry the request

arguments). As mentioned above, copy commands may gen-

erate (multiple) write packets, when their source address is

local, or a read-request packet when their source address is

remote. The NI segments write-RDMA’s into smaller packets

when they exceed the maximum packet size (256-bytes in our

prototype), or when alignment reasons dictate it. All packets

are enqueued in an outgoing NoC FIFO buffer (4KBytes -

TABLE I
HARDWARE COST BREAKDOWN IN FPGA RESOURCES

Block LUTs (6-inp) Flip Flops BRAMs

MicroBlaze + Instr. Mem. 2525 2270 4

L1 + ART + Way-Pred. 441 197 3

L2 Cntrl. + Arrays + Arb. 961 372 23

NI Total 2338 1611 4

- Rem-Store Buff. 52 99 0

- Monitor + Wr. Buff 241 519 0

- Outgoing NI 1182 583 2

- Incoming NI 388 285 0

- Pck. Handl. + FIFOs 475 125 2

Tile Total 6265 4450 34

NoC (5x5) 645 60 0

DDR2 SDRAM Cntrl. 3745 4463 0

Design Total (4x Tile) 29450 22323 136

minimum BRAM size) that is used to cross clock-domains

and support network backpressure; the NoC interface circuit

implements cut-through. After the packets for a command have

been sent, the NI updates the actual descriptor to signal DMA

departure and thus allow the buffer to be recycled.

Incoming NI

The incoming NI implements “store-and-forward” in order

to check CRC for transmission errors. The NI has first to

identify whether a packet belongs to cache or scratchpad

traffic, by checking the tag control bits of the destination

address. If the destination is a cache-line waiting to be filled,

then the NI delivers data in place (following critical word

first) and signals the L2 controller; only Write-type packets

are supported for incoming cache traffic. Write-type packets

destined to scratchpad lines have to perform different steps

according to the type of the line. In plain scratchpad lines, data

are delivered in-place and a write of the packet size is sent to

the acknowledgement address, if non-NULL. Incoming write

packets destined to Counter lines are handled in an analogous

manner; only their first word is considered. If a write packet

is destined to a Queue, then the queue descriptor is accessed

and the tail pointer is used to enqueue the incoming packet;

the NI performs bound checking and handles pointer wrap-

around. Read-type packets carrying a DMA request use the

queueing steps, mentioned before, to enqueue in the Read

Service Queue. Read DMA requests are handled as if they

were Write DMA’s from the local processor; however, the

command buffer address is fetched from the Read Service

Queue pool and the Pending Command Queue is notified.

IV. HARDWARE COST AND LATENCY MEASUREMENTS

This section reports on the implementation cost of our

FPGA prototype and presents latency figures. First, we re-

port on the total area complexity of the prototype and then

we compare plain cache and scratchpad designs against our

integrated Cache/Scratchpad and NI. Finally, we illustrate the

latency of the primitive operations supported by our NI.

A. Design Cost in FPGA Resources

Table I presents the hardware cost of the system blocks.

The numbers refer to the implementation of the design in a

Xilinx Virtex-5 FPGA (XUPV5-LX110T development board)
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with the back-end tools provided by Xilinx. The most complex

block of our NI design is the Outgoing engine which arbitrates

between all sources of outgoing traffic, it costs approximately

50% of the total NI LUTs and 35% of the total NI Flip-Flops.

The current total design occupies less that 50% of the available

LUTs and Flip-Flops in our FPGA device, however we utilize

90% of the available memory blocks (BRAMs) and thus we

cannot support larger caches or more than 4 tiles.

B. Area Benefits of Integrated Cache/NI Controller

We have counted and report separately, in Figure 4, logic

(LUT) and flip-flop complexity of three different designs: (i)

all SRAM operating as scratchpad only, and a NI providing

DMA’s; (ii) all SRAM operating as cache only, and a cache

controller; (iii) our configurable cache/scratchpad with its

integrated NI/cache controller. As seen, the integrated design

(iii) has a complexity considerably lower than the sum of the

complexities of the two dedicated designs, owing to several

circuits being shared between the two functionalities. The

circuit sharing is mostly observed on memory block datapath,

the outgoing and incoming NI, and economizes more than 20%

in hardware complexity. We expect that the shared circuits will

increase as we incorporate more advanced cache mechanisms

such as multiple outstanding cache misses and coherence.

C. End-to-End Latency

Figure 5 presents the latency breakdown of the following

primitive NI operations: Remote-Store, Message and RDMA-

write transfers. The SW initiation cost, the NI transmit latency

and the XBAR latency of every operation is constant under

zero network-load conditions – the outgoing path implements

cut-through. The latency for the reception of the packets

and delivery of the payload in memory are commensurate

to the size of the transfer – the incoming path implements

store-and-forward, in order to check packets’ CRC for errors.

Remote-Stores of 4-bytes cost 27 cycles and are faster than the

equivalent messages and DMAs, since the initiation is implicit

– no descriptor has to be posted. Minimum-sized messages and

DMAs of 4-bytes have the same end-to-end latency of 30 clock

cycles, the latter fact is attributed to the optimization of the

Command Write Buffer that saves the memory accesses needed

to read the DMA descriptor. Large DMAs cost a significant

amount of cycles, e.g. a 128-byte DMA costs 76 cycles and

this is attributed mostly to latency enforced by the “store-and-

forward” operation at the receiver.

The NI transmit path has a latency of 11 clock cycles: 3 of

them are attributed to the pipelined path to reach L2 and 4 of

them are spent on the asynchronous outgoing FIFO that serves

both as a NoC buffer but also as clock domain synchronizer.

The remaining 4 clock cycles are spent as follows: 1 clock

cycle on the completion monitor, 1 clock cycle on NI request

scheduling and ART check (identify if source address is local

or remote), 1 clock cycle to prepare the packet header and

enqueue it to the NoC buffer and 1 clock cycle on the NoC

side to issue a request to the crossbar. The outgoing path delay

is dominated by the pipeline and FIFO latencies.

Fig. 4. LUT and flip-flop complexity of each node, excluding processor,
crossbar and SRAM blocks.

The NI receive path latency has two components: (i) store-

and-forward latency for the reception a packet in the incoming

NoC FIFO buffer and (ii) proof-checking with CRC and in-

place delivery of data in the memory. Both latencies are

commensurate to the size of the packet but we discuss below,

in detail, the “more interesting” latency for the delivery of a

single word transfer in memory. The observed latency for the

latter delivery in memory is 7 cycles and it is attributed as

follows: on the NoC size we spend 1 clock cycle to check the

CRC and 1 clock cycle to inform the incoming NI path for the

successful reception of a new packet. Thereafter, the incoming

engine needs 1 clock cycle to start, 1 clock cycle to read the

tag of the destination address, then 1 clock cycle is needed to

dequeue the packet header from the incoming FIFO, 1 clock

cycle is needed then to align data correctly and the last clock

cycle is spent to write the data in memory.

V. RELATED WORK

Configuration of memory blocks has been studied before in

the Smart Memories [11] project, but from a VLSI perspective.

They demonstrate that using their custom “mats”, i.e. memory

arrays and reconfigurable logic in the address and data paths,

they are able to form a big variety of memory organizations:

single-ported, direct-mapped structures, set-associative, multi-

banked designs, local scratchpad memories or vector/stream

register files. The TRIPS prototype [12] also implements

memory array reconfiguration, but in very coarse granularity.

They organize arrays into memory tiles (MTs), which include

an on-chip network (OCN) router. Each MT may be configured

as an L2 cache bank or as a scratchpad memory, by sending

configuration commands across the OCN to a given MT.

Network interface (NI) placement in the memory hierarchy

has been explored in the past. In 90’s, the Alewife multi-

processor [13] explored an NI design on the L1 cache bus
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Fig. 5. Remote-Store, Message and DMA transfers latency breakdown, as a
function of data size (bytes)

to exploit its efficiency for both coherent shared memory

and message passing traffic. At about the same time, the

Flash multiprocessor [14] was designed with the NI on the

memory bus for the same purposes. Cost effectiveness of

NI placement was evaluated assessing the efficiency of in-

terprocessor communication (IPC) mechanisms. Mukherjee et

al. [15] demonstrated highly efficient messaging IPC with a

processor caching buffers of a coherent NI, placed on the

memory bus. Streamline [16], an L2 cache-based message

passing mechanism, is reported as the best performing in

applications with regular communication patterns among a

large collection of implicit and explicit mechanisms in [17].

Moreover, NI Address Translation was extensively studied

in the past to allow user-level access, overcoming operating

system overheads [18], and leverage DMA directly from the

applications [14].

VI. CONCLUSIONS AND FUTURE WORK

The development of our FPGA prototype and the hardware

cost analysis of the configurable cache/scratchpad memory

with the integrated Network Interface and Cache Controller

proves the feasibility of our approach and the existence of

circuitry that is shared between the network interface and

cache controller. Our implementation shows that the merged

cache plus scratchpad uses 20 percent less hardware than the

two separate systems. Moreover, bringing the NI close to the

processor, at L2 level, has significant performance impact in

the latency of NI operations: one-way, end-to-end, user-level

communication completes within about 30 clock cycles for

short transfer sizes. We are working towards adding extra

features in the NI and merging them with more advanced cache

functionalities like multiple outstanding misses and directory-

based cache coherence.
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