
Formic: Cost-efficient and Scalable Prototyping of Manycore Architectures

Spyros Lyberis, George Kalokerinos, Michalis Lygerakis, Vassilis Papaefstathiou,
Dimitris Tsaliagkos, Manolis Katevenis, Dionisios Pnevmatikatos and Dimitris Nikolopoulos

Institute of Computer Science, Foundation for Research and Technology (FORTH-ICS)
Heraklion, Crete, Greece

{lyberis,george,ligeraki,papaef,tsaliag,kateveni,pnevmati,dsn}@ics.forth.gr

Abstract—Modeling emerging multicore architectures is
challenging and imposes a tradeoff between simulation speed
and accuracy. An effective practice that balances both targets
well is to map the target architecture on FPGA platforms.
We find that accurate prototyping of hundreds of cores on
existing FPGA boards faces at least one of the following
problems: (i) limited fast memory resources (SRAM) to model
caches, (ii) insufficient inter-board connectivity for scaling the
design or (iii) the board is too expensive. We address these
shortcomings by designing a new FPGA board for multicore
architecture prototyping, which explicitly targets scalability
and cost-efficiency. Formic has a 35% bigger FPGA, three
times more SRAM, four times more links and costs at most
half as much when compared to the popular Xilinx XUPV5
prototyping platform. We build and test a 64-board system
by developing a 512-core, MicroBlaze-based, non-coherent
hardware prototype with DMA capabilities, with full network-
on-chip in a 3D-mesh topology. We believe that Formic offers
significant advantages over existing academic and commercial
platforms that can facilitate hardware prototyping for future
manycore architectures.

Keywords-programmable circuits; prototypes; multicore pro-
cessing; design methodology.

I. INTRODUCTION

There are two main approaches on multicore systems
prototyping: simulating them in software vs. prototyping
them in hardware, using FPGAs. Building multicore systems
using FPGAs is considerably harder and slower, but running
programs on the final system is fast. Moreover, the modeling
process provides better insight on the impact of architectural
changes and helps to avoid pitfalls of unrealistic software
simulation parameters.

The dominant hardware paradigm for modern multicores
is the cache-coherent shared memory machine. However,
as we enter the manycore era we face more and more
challenges regarding both the complexity of hardware cache
coherency protocols and the efficiency of shared-memory
programming models. One approach that mitigates the prob-
lem is to move to non-coherent architectures that rely on
distributed memory and explicit communication [1].

To model such architectures on FPGAs, we find that
the existing prototyping boards [2] are limited in at least
one of the three following aspects: (i) they do not feature
enough SRAM memory, which is needed to model cache
behavior, (ii) they do not have enough off-board links to

Figure 1. The Formic board

allow connecting many boards together to build scalable
systems, or (iii) their cost is prohibitive to obtain in large
quantities. To address the previous points, we design a
new prototype board which is specifically targeted to model
architectures of high core counts.

The main contributions of this work are:
• The design of Formic, a novel FPGA prototyping board
• The development of a non-coherent, scalable, hardware

architecture for Formic and its proof-of-concept design
using 64 boards of 512 total cores

II. THE FORMIC PRINTED CIRCUIT BOARD

We introduce Formic, a novel hardware prototype board
designed specifically to be a cost-efficient building block for
scalable systems. It is minimal in concept, small, has both
SRAM and DRAM memories, features convenient SATA
connectors and is optimized to be a part of a larger system.

The Formic board (figure 1) consists of a Xilinx Spartan-
6 LX150T FPGA, three Cypress 9-Mbit 166-MHz ZBT
SRAMs and a single Micron 1-Gbit 400-MHz DDR2
SDRAM chip. Each SRAM offers a raw bandwidth of 5.3
Gbps and the DRAM has a peak bandwidth of 12.8 Gbps.
We selected the specific Spartan-6 device as an optimal

GTP

GTP

GTP

GTP

GTP

GTP

GTP

GTP

MBS MBS MBS MBS

MBS MBS MBS MBS

TLB

RS232

UART I2C

I2C

BRD_CTL

XBAR

DRAM

DRAM_CTL

SATA

SATA

SATA

SATA

SATA

SATA

SATA

SATA

SRAM_CTL

SRAM

SRAM_CTL

SRAM

FPGA boundary

Figure 2. Block diagram of a single FPGA in the non-coherent multicore
hardware prototype design. Dark parts indicate usage of Xilinx IP blocks.

tradeoff among its high capacity (92K 6-input LUTs, 184K
flip-flops, 4.8 MBit BRAMs), its high number of high-speed
GTP serial links (8 x 3.0 Gbps) and its low cost (≈$250).
This represents a 35% increase in LUTs and 87% savings
in cost compared to the XUPV5 Virtex-5 LX110T-1 device
(≈$2,000). We offset the intrinsically lower performance of
the Spartan parts by selecting the fastest Spartan-6 speed
grade (-4), to approach as much as possible the slow Virtex-
5 speed grade (-1) used in the XUPV5 platform.

The Formic board is specifically designed to be a build-
ing block for large systems. To this end, it has a small
form factor (10 x 10 cm). The eight FPGA GTP links
are accessible through standard SATA connectors in two
groups of four (top and bottom). Half of each group are
in “Host” and half in “Device” connection modes, so that
plain (instead of crossover) SATA cables can interconnect
the boards of a system. All needed voltages are generated
on board from a 12V unregulated input. At the left and right
PCB sides we place mirrored power supply and buffered
JTAG chain connectors, so that boards can be connected in
chains – this is controlled using slide switches. We include
a configuration PROM for the FPGA, so that large systems
can boot fast. Twelve DIP switches are used to identify each
board, allowing for systems with up to 4096 boards. Large
passive coolers are used for the FPGAs, so that bulk fans
can cool multiple boards and minimize the audible noise.

By carefully assigning the FPGA I/O pins to the outer
rings, we use only ten PCB layers. The minimum trace width
used is 5 mils (0.127 mm) and the smallest drilled holes are
0.3 mm. There are seven generated power supplies on board:
1.23V for the FPGA core, 1.8V for the DRAM, 0.9V for its
address pins termination, 2.5V for the SRAMs, two separate
1.20V for the GTP links (top/bottom FPGA banks) and 3.3V

SRAM_CTL XBAR

ART

CTL

Writeback

Operation
Network

Interrupt

Instruction Data

Write
Read or

L2 Miss or

access

Counter or
Mailbox

Counter

Register
access

miss
Instr L1 Data L1

miss

Inv req

MBS boundary

notification

L2C $

MNI

Network trafficL2 Data traffic

CMX

MicroBlaze CPU

IL1 $ DL1 $

Figure 3. Block diagram of a MicroBlaze Slice (MBS). Arrows indicate
which side initiates the related bus transaction.

for the RS-232 and some regulator bias pins. Two high-
quality, differential, 150 MHz oscillators clock the top and
bottom GTP banks; these enable a 3.0 Gbps link operation.
The FPGA receives a third differential clock input of 200
MHz, which feeds the internal PLLs to generate all needed
frequencies for the logic. The board also features twelve
LEDs, an RS-232 port, a generic two-pin connector for slow,
tri-stated management buses such as I2C as well as a big,
red, comforting reset button.

III. THE SCALABLE HARDWARE ARCHITECTURE

The first hardware design project which uses the Formic
board is a prototype of a non cache-coherent manycore
architecture, based on ideas of the SARC project [3], which
was fully implemented in software simulation and partially
implemented on a XUPV5 hardware platform [4]. Each
board fits in its FPGA eight CPUs, their private L1 and L2
caches, eight GTP links and a full network-on-chip centered
around a 22-port crossbar. A variable number of boards
can be interconnected in a 3D-mesh using the GTP links,
growing the system as required. This hardware architecture
will be used in the ENCORE project [5], as the basis of a
manycore, task-based runtime system.

Figure 2 shows the block diagram of a single FPGA.
There are eight MicroBlaze Slice (MBS) blocks, each of
them featuring a Xilinx MicroBlaze CPU, its cache hierarchy
and the related network-on-chip interface. Four MBS blocks
share an SRAM for their L2 data storage, so two SRAM
controllers are provided to handle the partitioning and the
interface to the SRAM chips. Eight GTP link controllers
connect the network-on-chip to the other boards. A board
controller handles board-related interfaces, such as the RS-
232 port, the I2C port, the global timer and the TLB

mechanism. Our hardware uses global virtual addresses,
so just before the DRAM controller a board-level TLB
translates virtual addresses to physical. All these parts are
interconnected by a crossbar.

We use the 32-bit Xilinx MicroBlaze RISC CPUs, whose
area-optimized, 3-stage pipeline version — including a
single-precision FPU, but stripped of its native caches and
MMU unit — drops to only 2,100 LUTs. Figure 3 shows
the internal of an MBS block, where the MicroBlaze core
is located. The CPU has two 32-bit interfaces, one for the
instruction and one for the data side. Both are fed into an
Address Region Table (ART) block, which is programmed by
software to specify five regions on the 32-bit global virtual
address space and to perform permission checking.

Instruction accesses are cached by a 4-KB, two-way set
associative L1 cache (IL1), and data accesses are cached
by an 8-KB, two-way set associative, write-through, write-
no-allocate L1 cache (DL1). Because of the write-through
behavior, the L2 cache is always up-to-date with (but not
necessarily inclusive of) the DL1 contents. DL1 also has
an invalidation interface in order to keep up with L2 data
changes that may occur from incoming DMAs. L1 misses
end up in the L2 cache (L2C), a 256-KB, eight-way set
associative, write-back, private cache.

The MBS Network Interface (MNI) block handles the
communication with the network-on-chip. L2C can initiate
Misses, for fetching cache lines from the local DRAM, and
Writebacks for cache lines that it evicts to the local DRAM.
Our system supports DMAs from/to explicitly named MBS
blocks, through a DMA engine inside MNI which can
initiate Reads and Writes from/to the local L2C.

CPU peripheral registers accesses are handled by the
Control (CTL) block, which keeps 38 memory-mapped
registers and controls appropriately all MBS blocks. CTL
also features an interrupt controller, which implements 8
maskable and 5 non-maskable interrupts, a private timer,
13 performance counters and a delinquent load/store tracing
interface.

The Counter & Mailbox (CMX) block keeps 128 counters
that can be used to track the progress of ongoing DMA
operations [3]. The counters can be polled by the CPU, send
an interrupt and/or send notification packets to other counters
when the programmed number of acknowledgment packets
has been received. CMX also implements a 4-KB incoming
mailbox, which can be written from the network and read
by the CPU, and a single-word mailslot which is used for
remote register reads.

At the heart of the network-on-chip is a 22-port crossbar
switch. It uses combined input & output queueing, supported
by custom elastic buffers which can hold six packets per
queue per VC. All network parts use credit-based flow
control for completely lossless transmissions. The network
has three separate VCs and uses dimension-order routing to
avoid protocol deadlocks. The GTP links are connected to

Figure 4. The 4x4x4 cube of 64 Formic boards. Each octo-core board
connects with X, Y and Z-axis GTP links to its neighbors.

the network-on-chip by blocks which operate on the crossbar
elastic buffers. They insert, check and remove CRC headers
on the fly to guard for any physical layer errors. They
also handle board-to-board flow control by transmitting and
receiving credit packets.

Packets going to the local DRAM pass through a five-port
TLB, which translates the virtual addresses to physical and
accesses the DRAM. We use five crossbar ports to correctly
match the four Xilinx DRAM controller ports. The TLB can
also introduce a minimum, timestamp-based programmable
delay to slow down memory accesses in order to model large
main memory delays.

We use a variety of edge-aligned clocks to model effi-
ciently the high-bandwidth parts using fast but narrow datap-
aths; e.g. the crossbar is clocked at 160 MHz but has only 16-
bit datapaths. This allows for a very efficient FPGA design,
but limits the CPU performance – we clock the CPUs at
only 10 MHz to maintain realistic cache and communication
latencies. We consider this trade-off acceptable, as modeling
very high core count on FPGAs using this technique are still
orders of magnitude faster than simulating them in software.

IV. THE 512-CORE PROOF-OF-CONCEPT DESIGN

To evaluate the Formic board and build a proof-of-concept
design, we manufactured 68 Formic boards in total. The
board-level correctness evaluation was done using a self-
testing hardware design in the FPGA, which exercises simul-
taneously and continuously the three SRAMs, the DRAM

Table I
COMPARING FORMIC TO OTHER HARDWARE PROTOTYPING PLATFORMS

Platform Dimensions FPGAs Layers Components LUTs BRAM SRAM DRAM Board links Price

BEE2 13.8” x 17.3” 5 × Virtex-II 22 4000 372K (4-inp) 3 MB – 20 GB 180 Gbps $10K
BEE3 12” x 16.5” 4 × Virtex-5 18 2500 389K (6-inp) 3.7 MB – 64 GB 352 Gbps $18K
XUPV5 8.3” x 5.5” 1 × Virtex-5 14 913 69K (6-inp) 0.7 MB 1 MB 256 MB 7.2 Gbps $2K
Formic 4” x 4” 1 × Spartan-6 10 336 92K (6-inp) 0.6 MB 3 MB 128 MB 19.2 Gbps < $1K

Table II
LATENCY OF OPERATIONS IN CPU CLOCK CYCLES

Task CPU clock cycles

L1 hit 1
L2 hit 4
L2 miss 22 + programmable delay
DMA engine initiation 12 (message) - 24 (full)
Network packet latency 3 - 4 (on-board), 5 - 6 (per-board hop)

and all eight GTP links at full speed. The board design
was proven to be fully functional from the first run. Formic
consumes 0.18 A at 12 V (2.16 W) when the FPGA is
deprogrammed, 0.72 A (8.64 W) during the self-test and
0.56 A (6.72 W) when running our prototype design.

Table I compares Formic to the Xilinx XUPV5 board [6]
and the Berkeley Emulation Engine boards [2]. BEE2 and
BEE3 use multiple FPGAs per board, but do not offer any
SRAM. XUPV5 uses a single FPGA and a single SRAM
module. Formic offers better SRAM and GTP links ratio
per FPGA LUT count than all three boards. Compared to
XUPV5, Formic has a 35% bigger FPGA, 3 times more
SRAM, half as much DRAM and 4 times more GTP links.
Moreover, it is smaller, has 4 less PCB layers, one third
the total components and features an FPGA 8 times cheaper
in list price. For our test run of 68 boards, including the
prototyping costs and the price of the Spartan-6 devices that
Xilinx donated to us, we estimate the total cost to be well
under $1,000 per board. Instead, XUPV5 has a list price of
$2,000, although researchers can obtain it at a discounted
rate for $750 [6]. A production run of Formic boards will
lead to an even more pronounced price advantage.

We used the Formic boards to create a 3D-mesh of 64
boards (figure 4), which implements a 512-core proof-of-
concept prototype. Table II shows the latency in CPU clock
cycles for certain tasks. The L2 miss is quite fast at 22
cycles, so a timestamp-based programmable delay is used
to model realistic main memory delays. To initiate a full
DMA the software needs 24 clock cycles. A more compact
“Message” operation can be initiated in only 12 cycles to
send a single 32-bit word to the destination. A minimum-
sized packet (36 bytes) needs 3-4 cycles to traverse the
internal network; board-to-board traversals add 5-6 cycles
per hop. These delays are in line with state-of-the art 2D-
mesh multicore architectures [1].

The Formic board design is fully described in Verilog
and uses roughly 66,000 lines of code. It is accompanied by
a full-system simulation environment with automatic non-
regression testing. The full octo-core design uses 75% of
the LX150T FPGA. We use a script-based, floorplanned,
hierarchical flow in Xilinx EDK 12.4 tools.

V. CONCLUSION

We introduce Formic, a cost-efficient building block de-
signed for scalable multi-board prototypes. Formic fills an
important gap of both academic and commercial platforms,
which either are too expensive or do not feature adequate
SRAM and board-to-board connections. We design a scal-
able hardware architecture and implement a 64-board, 512-
core proof-of-concept prototype. We argue that although
hardware prototyping is harder than software simulation, the
effort is well worth the added insight, the modeling accuracy
and the execution speed. The Formic 512-core prototype
design is available at http://formic-board.com.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Union 7th Framework Programme
[FP7/2007-2013], under the ENCORE (grant agreement no

248647) and TEXT (no 261580) Projects. We would like to
thank Xilinx for the donation of 64 Spartan-6 FPGA devices.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. R. Vangal, and D. Finan,
“A 48-core IA-32 message-passing processor with DVFS in
45nm CMOS,” in ISSCC. IEEE, 2010, pp. 108–109.

[2] J. D. Davis, C. P. Thacker, and C. Chang, “BEE3: Revitalizing
computer architecture research,” Microsoft Research, Tech.
Rep. MSR-TR-2009-45, April 2009.

[3] M. Katevenis, V. Papaefstathiou, S. G. Kavadias, D. N. Pnev-
matikatos, F. Silla, and D. S. Nikolopoulos, “Explicit commu-
nication and synchronization in SARC,” IEEE Micro, vol. 30,
no. 5, pp. 30–41, 2010.

[4] S. G. Kavadias, M. Katevenis, M. Zampetakis, and D. S.
Nikolopoulos, “On-chip communication and synchronization
mechanisms with cache-integrated network interfaces,” in
Conf. Computing Frontiers. ACM, 2010, pp. 217–226.

[5] “ENCORE EU FP7 programme,” www.encore-project.eu.

[6] “Xilinx university program XUPV5-LX110T development sys-
tem,” www.xilinx.com/univ/xupv5-lx110t.htm.

