
INTERPROCESSOR COMMUNICATION
SEEN AS LOAD-STORE INSTRUCTION GENERALIZATION

Manolis G.H. Katevenis†

Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH-ICS),
Vassilika Vouton, Heraklion, Crete, GR-70013 Greece - Member of HiPEAC

http://archvlsi.ics.forth.gr/∼kateveni/

ABSTRACT
This paper presents the current (2007) author’s views and opinions on interprocessor communication
(IPC) and how it should evolve in future multiprocessors, with an attempt to define an IPC architecture
that is uniformly extensible from small-scale chip multiprocessors (CMP) to large-scale multi-chip parallel
systems. We adopt the viewpoint that all IPC is based on data transfers through an (on-chip or multi-
chip) interconnection network; all processors, acceleration engines, and independent memories interface to
this network through lightweight and tightly-coupled network interfaces (NI). Just like traditional (RISC)
processor-to-memory communication is via load and store instructions and atomic operation primitives,
future IPC should be based on the corresponding data transfer primitives: remote read DMA, remote write
DMA, and remote queues. We assume a global address space. By examining the traditional functions of
address translation and network routing (and perhaps even caching), we observe that these are closely
related, and thus will probably have to be provided through a unified mechanism, whose purpose should
be to support data migration and protection; flow control and congestion management may have to be
closely linked to this same mechanism. Two interesting possibilities are to architect NI’s so that they
detect some events and cause corresponding actions, and to implement cache coherence, when and where
provided, on top of the above hardware primitives provided by the NI’s.

1. INTERPROCESSOR COMMUNICATION IN PAST AND FUTURE MP’S

Digital processors increasingly work in cooperation, rather than in isolation. Chip multiprocessors (CMP)
[1] [2] [3] contribute centrally to this trend. Interprocessor Communication (IPC) is the means by which
processor cooperation is implemented. The purpose of this paper is to reflect upon future IPC architectures
and to provide this author’s opinion about them, even if parts of this opinion are based on intuition.

Past systems provided either fast but non-scalable IPC through coherent caches, or scalable but long-
latency IPC through general-purpose interconnection networking. There was an underlying –sometimes
in-admitted– assumption that large-scale and high-performance IPC was either not needed or not feasible
or prohibitively expensive. This paper opposes that view, and tries to outline a unifying architecture for
high performance IPC both at the small and at the large scale.

1.1. Communication to Computation Ratio

The ratio of (remote) communication to (local) computation varies widely from application to application,
just like, e.g., some applications perform no floating-point calculations at all while other applications

†also with the Dept. of Computer Science, University of Crete, Greece

55

SwitchP bus
I/O Netw.

Intf.

M

memBus Network Link

bus/bridge overhead (10−100’s cycles)

data copying overhead (10−1000’s cycles)

overheads (100−1000’s cycles)
operating system call and protocol

B
rid

ge

Fig. 1. Network Interfaces of the past and their overheads

critically depend on fast floating-point hardware for their performance. Interprocessor communication
was expensive, relative to local computation, in the computer systems of the past half century, especially
in large-scale multiprocessors (MP’s larger than typical cache-coherence diameters). Thus developers
architected their applications so as to avoid frequent or extensive communication, and so as to batch
communicated data into coarse-grain units.

Some designers observe this property of typical current applications, and conclude that there is no
need to support high ratios of communication-to-computation, or fine-grain communication patterns –or
at least not so for communication by means other than coherent caches. Such an attitude, however, clearly
creates a chicken-and-egg effect: applications will not use extensive, fine-grain communication as long as
architectures do not support it, and new architectures will not support it because applications do not use
it! In this author’s opinion, new architectures should not omit or delay the exploitation of opportunities
created by the new technology in the area of high-throughput, low-latency, and fine-grain communication,
at all scales –both on-chip and system-wide. Such architectural support for advanced IPC will enable a
whole new breed of parallel applications.

1.2. IPC Overheads in Cluster Computing using Network Interfaces of the Past

Large-scale multiprocessing is based, since a decade ago, on cluster computing. In clusters, interprocessor
communication (IPC) has to occur through the I/O subsystem, which was designed for the peripheral
devices of the past that were much slower than processors or modern interconnection networks. Figure
1 illustrates this placement of the network interface (NI) and its associated overheads; these overheads
are listed below together with the methods to eliminate them, based on the research of the last 15 years.
Advanced architectures have adopted some such solutions, and widespread adoption must occur in all
forthcoming architectures.

• Each I/O operation required the intervention of the operating system in order to provide virtual-
ization of the I/O devices, i.e. transparent sharing of these devices among multiple user processes.
Traditional system call overhead is in the hundreds to thousands of clock cycles. To eliminate this,
multiple methods for (protected) user-level access to the I/O devices have been demonstrated [4].

• I/O transfers occurred over the I/O bus, with latencies in the tens to hundreds of processor cycles
–quite slower than the memory bus. To reduce this overhead, researchers have proposed to tightly
couple the network interface to the cache hierarchy [5].

• I/O data had to be copied multiple times –typically at least once between network interface and
memory, and once between kernel and user address space. To eliminate this overhead, zero-copy
communication protocols have been developed [6].

Manolis G.H. Katevenis

56

Processor

L1 (and L2?)

Cache Ctlr

Cache

Processor

L1 (and L2?)

Cache Ctlr

Cache

Processor

L1 (and L2?)

Cache Ctlr

Cache

Processor

L1 (and L2?)

Cache Ctlr

Cache

Processor

L1 (and L2?)

Cache
L1 Netw. Intf.

Processor

Memory
Local

L1 Netw. Intf.

Acc.Engine

Memory
Local

L1 Netw. Intf.

Processor

Memory
Local

L1 Netw. Intf.

Processor

L1 (and L2?)

Cache
L1 Netw. Intf.

of
f−

ch
ip

IP
C

of
f−

ch
ip

IP
C

N
et

w
. I

nt
f.

(N
I)

N e t w o r k − o n − C h i p (N o C)

Le
ve

l 2
 (

L2
)

N
I

Processor

L1 (and L2?)

Cache
Cache Ctlr

N e t w o r k − o n − C h i p (N o C)

on−chip IPC via NI primitives, or via cache coherence on top of NI prmtv

on−chip IPC via coherent caches

(b)

(a)

Fig. 2. NI placements for future systems: (a) NI only for off-chip IPC; (b) NI’s for unified IPC.

1.3. Network Interface Placement in future CMP’s

Figure 2 shows two alternative placements for network interfaces (NI) in future chip multiprocessors
(CMP). The architecture in part (a) assumes that each processor has local caches (level-1, and possibly
level-2 as well), and that all caches on a same chip are coherent. The coherence protocol runs on the
network-on-chip (NoC); each node (processor plus caches) interfaces to the NoC via its cache controller.
Communication among processors on a same chip is via coherent-cache shared memory. The network
interface (NI), in its more-or-less traditional form, is used to communicate with the off-chip network;
the NI is assumed to talk the same coherence protocol as the on-chip caches do [5], and processors
communicate with the NI through this protocol: outgoing data depart from and incoming data arrive into
the on-chip memory hierarchy. This architecture perpetuates the traditional dichotomy between local and
remote IPC –the traditional view that NI operations incur a heavy overhead. In relative terms, the NI in
this architecture is as “far” from individual processors as the NI in figure 1 was away from that processor.

Part (b) of figure 2 shows an architecture for unifying local and remote IPC –an architecture for
bringing the NI much closer to each processor, so that lightweight (low-overhead) NI operations can be
supported. The reasons for preferring this IPC architecture over the one of part (a) are as follows:

• Some CMP’s, especially those intended for embedded applications, will contain processors that use
local scratchpad –rather than cache– memory, or processors whose local SRAM can be configured
to operate (partly) as scratchpad and/or (partly) as cache memory, e.g. to provide deterministic
performance; the Cell processor [1] is one such example. These processors need a network interface –
rather than or in addition to a cache controller– in order to communicate with the rest of the system.
A similar situation occurs when processors are to communicate with special-purpose accelerator
engines, as illustrated in the middle of figure 2(b).

• For processors that use caches, or whose local SRAM can be configured to (partly) operate as
cache, we propose to merge the cache controller and the network interface [7], since these have
complementary functionalities. The basic function of the NI is to provide data transport, in the
form of block transfers (section 2). Cache controllers have a higher-level function: handle cache
misses and coherence events, using block transfers as an underlying primitive. This approach also

INTERPROCESSOR COMMUNICATION

57

allows the option to implement some layers of the cache coherence protocols in software, using the
underlying data transport primitives provided by the NI hardware.

• When network interfaces are provided both next to each processor (level-1 NI) and at the chip
boundary (level-2 NI), the IPC protocols of large-scale systems can be seamlessly extended to the case
where the communicating processors happen to reside on the same chip. These protocols can now
feature low-overhead and low-latency, owing to the tight coupling of L1 NI’s to the processors. At
the same time, the high cost of off-chip communication (increased round-trip times, hence increased
buffering) needs only be borne by the L2 NI’s.

2. REMOTE DMA: THE GENERALIZATION OF LOAD/STORE INSTRUCTIONS

Communication occurs by transferring (copying) data from a source to a destination. Each transfer
operation may concern various amounts of data: a single bit (rarely), or a single byte (inefficient, but
used for text of media types), or a few bytes (one word, as with load and store instructions), or tens of
bytes (e.g. a cache line), or hundreds of bytes (a small data structure?), or thousands of bytes (e.g. a
small page), or millions or more of bytes (e.g. a large page or file). Hardware architects and application
developers choose this granularity based on a well-known tradeoff: fine granularity for improved flexibility
and space economy, versus coarse granularity for better amortization of operation overhead over a larger
amount of work.

2.1. Granularity of Data Transfers as a function of Distance

Within the processor, the overhead of each transfer is the use of one word-wide path for one clock cycle;
hence, transfers are performed at the word granularity. Between the processor and its local memory (e.g.
level-1 cache, when caches are used), the transfer overhead is again the use of one word-wide path for
one clock cycle, plus the consumption of one (word-wide) load or store instruction, plus the transmission,
translation (TLB), and checking (against cache tags) of the (word-wide) address. In this case, single-word
granularity is again used, for simplicity and flexibility reasons, although the overhead (on the order of two
words –one instruction plus one address) could justify a granularity of a few data words per load/store
instruction (and some processors do in fact provide such multi-word instructions). Between levels of the
cache and memory hierarchy, each transfer incurs the cost of a few clock cycles in the cache controller, a
bus transaction (a network-on-chip (NoC) packet, in future systems), and possibly a DRAM row activation
(a few tens of nanoseconds). The transfer granularity, here, is the cache line –usually 32 to 128 bytes–
which uses a typically 8-byte-wide datapath for 4 to 16 clock cycles; again, granularity is commensurate
to overhead.

Besides the above, the only other type of data transfers supported by traditional computer systems
were input/output (I/O) transfers, which occurred through the slow path discussed in section 1.2. Under
these circumstances, the only other data transfers that traditional systems supported had to be on the
granularity of tens of KBytes for them to achieve substantial efficiency.

In the future computing systems, where massive multiprocessing will be the default, all interprocessor
communication, including to the storage and I/O devices, will be through the interconnection network
(both on-chip and off-chip). The basic overhead of a data transfer through the interconnection network,
in terms of buffer space and transmission capacity utilization, is the per-packet header, when compared
to the packet’s payload; these headers (plus CRC and other line overhead) are, today, on the order of 16
to 32 bytes, per packet. Other overheads, in terms of processing cost and complexity, are the per-packet
routing, scheduling, and flow control decisions; there are known techniques, today, to limit all these to a
few clock cycles per packet.

Manolis G.H. Katevenis

58

Mem.1

Memory Memory

Mem.2 Mem.1 Mem.2P P

Addr

Data block

Processor ProcessorAddr

Registers Registers

A.src

sz

Data

A.dst

(a) (c)

(b) (d)

Store Instruction Load Instruction

Remote Write DMA Remote Read DMA

Data

sz

Data block

word word

A.dst

A.src

Fig. 3. Block data transfers (bottom) seen as generalizations of single-word instructions (top).

It follows from the above that well-designed, modern interconnection networks can provide good
efficiency for data transfers at granularities as fine as 16 to 256 byte blocks: for packets of these sizes,
header overhead is roughly between 6 and 50 percent, and typical packet time is 4 to 32 clock cycles,
which can be overlapped with the per-packet routing, scheduling, and flow control processing. Designers
must then strive to also reduce all other IPC overheads down to a single-digit number of (processor) clock
cycles, so that interprocessor communication at all scales becomes efficient at granularities as fine as a
few tens of bytes, i.e. one or more cache lines.

2.2. Remote DMA: Load/Store functionality at Block-Granularity

There is widespread agreement, nowadays, that Remote Direct Memory Access (RDMA) should be the
basic hardware primitive for low-latency IPC, in multiprocessing environments other than cache-coherent
MP’s. Figure 3 supports this argument by pointing out that remote DMA is in fact the generalization
of the load and store instructions on which processor-to-memory communication relies, when the transfer
size grows from one word to an arbitrary size sz.

As illustrated in fig. 3(a), a store instruction specifies a source register number and a destination
memory address, and causes a data copy from the former to the latter; the size of the copied data is
implicit in the instruction opcode, and is typically one word. In an analogous way, a remote write DMA
operation, fig. 3(b), specifies a source memory address, Asrc, a destination memory address, Adst, and a
block size, and causes a copying of that block of data from the former to the latter address; in the general
case, block size is arbitrary; we assume a global address space. Store instructions and write-RDMA’s are
“unidirectional” operations: control (address and op-request) and data move in the same, single direction.
Load instructions, fig. 3(c), and remote read DMA’s, fig. 3(d), are “round-trip” operations. This incurs
a longer latency: first, control arguments (address and op-request) have to travel to the “remote” source,
and then the response data (together with Adst) travel back to the (local) destination.

As seen, the only fundamental difference between load/store instructions and remote DMA operations
is the size of the data transfer concerned; differences in implementation tradeoffs result from this. Some
researchers (e.g. [8]) have advocated very fast IPC using data transfers directly from or into processor
registers. If register-based transfers were the only IPC mechanism, given the small size of the register
file, the lack of an arbitrary-size transfer primitive would be a severe handicap. In a system that already

INTERPROCESSOR COMMUNICATION

59

Sender1

P3

P2

P1

bu
ffe

r2

R
ec

ei
ve

r

careful w. completion notification

Remote DMA

Multipath Routing OK;

bu
ffe

r1

memory 1

memory 2

memory 3

Sender2

Fig. 4. Remote DMA requires single sender per receive buffer, or previous synchronization.

provides RDMA, we consider register-based transfers to only offer a very small added value: given all
the other network overheads, the performance gain from saving a few register-memory transfers is quite
limited. However, we do consider that RDMA initiation should be as fast as a few accesses to local
memory (e.g. L1 cache). Remote DMA initiation requires two address parameters, Asrc and Adst. For
the protection and migration support mechanism to properly operate, these arguments should be (gloabal)
virtual addresses; this is further discussed in section 4.

2.3. Cache Protocols on top of RDMA?

In a multiprocessor with coherent caches, interprocessor communication is traditionally performed through
the cache coherence protocol. Observe, however, that the handling of a cache read miss involves the
equivalent of a remote read DMA for a block of size equal to one cache line. Also, a cache line write-back
operation is the equivalent of a remote write DMA for a block of the same size. Thus, RDMA-capable
hardware may constitute an appropriate substrate for cache protocols to run on top of. Section 3 (remote
dequeue operation, and sections 3.4, 3.5, 3.6) discusses the possibility for network interfaces to trigger
actions in response to events. Such a capability could be used to detect cache miss or cache coherence
events and trigger corresponding cache line transfers via RDMA.

2.4. One-to-One Communication using Remote DMA

Figure 4 illustrates the RDMA operation, particularly in an environment where multiple parallel transfers
exist, and the packets of each transfer may be routed through different paths (“adaptive” or “multipath”
routing). For multiple senders, P1 and P2, to be sending to a same receiver, P3, the receiver must have
set up separate memory areas where each transfer is taking place –otherwise the synchronization overhead
between P1 and P2 would be excessive. Section 3.2 comments on what happens in situations where such
separate buffer pre-allocation would be too expensive.

Multipath (adaptive) routing is desirable because it greatly improves network performance; however,
multipath routing causes out-of-order delivery –a headache that many architects want to avoid. Remote
DMA matches well with multipath routing: since each packet specifies its own destination address (and
since destination regions are non-overlapping), it does not matter which packet arrives first and which
one second –each packet goes and finds its own destination, and when all packets arrive the “puzzle” that
they form will have been built. The only problem that remains is to detect when all packets belonging
to a same DMA “session” have arrived. In systems guaranteeing in-order delivery, receiver software can
detect that by polling a flag in the last byte of the DMA region. Systems that allow out-of-order delivery
must provide other mechanisms to detect DMA completion, e.g. counting the number of bytes that have
been received.

Manolis G.H. Katevenis

60

m2 m1m4m5m5

m4 m2

m1

m3

atomic increment

fetch−&−increment

renq

rdeq

req

reqfrom P2

from P1

from P4

to P3

from P3

to P4

Queue

head

tail

Fig. 5. Messages being atomically enqueued into and atomically dequeued from a Remote Queue.

3. REMOTE QUEUES: THE GENERALIZATION OF ATOMIC OPERATIONS

Individual load or store instructions do not suffice, as is well known, for synchronizing multiple threads
running in parallel. Similarly, their block-granularity counterpart, remote DMA, does not suffice for
synchronization. In shared-memory environments, a hardware primitive often provided for such purposes
is the atomic test-and-set of a (single-bit) shared variable; in other cases, variations or slightly higher-level
primitives are provided, e.g. (multi-bit) “fetch-and-op”. We consider these hardware primitives to be of
too low level, and inappropriate for scalable parallel processing. First, they carry a limited amount of
information (one bit or one integer number), each. Second, the usual synchronization operations of parallel
programing, when synthesized out of such primitives, require multiple round trips of control exchanges
between the processors and the shared variables that are involved.

Optimized implementations of higher-level synchronization operations are provided by the MCS locks,
which are based, to a large extent, on shared queue data structures. Similarly, Remote Queues (RQ) have
been proposed as the basis for synchronization operations [9]. The author believes that remote queues
are at the appropriate level of abstraction for them to constitute the basic hardware primitive for control
and synchronization in scalable multiprocessing. Figure 5 shows the basic ideas of remote queues, and
illustrates how these are generalizations of the atomic fetch-and-increment operations.

When multiple producers send information to a common location or consumer, the purpose of syn-
chronization is to control the interleaving of data at the arrival site, disallowing meaningless intermixings.
The Remote Enqueue (renq) operation does this for messages arriving from multiple sources. Messages m4
and m5, in figure 5, originate from different sources (or threads), P1 and P2, specify the same address as
their destination, and happen to arrive simultaneously. Because their common destination address corre-
sponds to a (remote) queue, rather than normal memory, the network interface atomically increments the
queue’s tail pointer and assigns separate, unique (normal-memory) write addresses to each of the arriving
messages. We suggest to simplify the implementation by limiting the size of messages so that each of
them fits into a single network packet; then, atomic message enqueueing becomes straightforward given
atomic packet transmission over network links.

Dequeueing messages from (remote) queues is simple in the case of a single (local) receiver, but more
difficult in the case of multiple (remote) readers. In the simple case, a single thread has read access to the
queue, and the queue resides in its local memory –the queue is “remote” to the senders, but local to the
receiver. In this case, atomicity of the dequeue operation is guaranteed by the single controlling thread.
In a slightly more complex case, the hardware must ensure atomic dequeue’s by each of multiple threads,
still running on the local processor. These are equivalent to atomic fetch-and-increment operations: each
thread atomically reads the queue head pointer –thus getting a pointer to the dequeued message– and
increments that head pointer –so that no other thread can receive the same message.

The case of multiple and remote readers is more difficult. Its purpose is to serve in “job dispatch”
type of applications: the queue holds descriptors for a number of pending jobs, and the readers are server
processors; when a server becomes available, it dequeues a next job. Thus, dequeue operations must be

INTERPROCESSOR COMMUNICATION

61

triggered by the (remote) readers and not by the queue itself. Figure 5 illustrates this by showing dequeue
requests being sent by potential readers at the time when these readers wish to perform a dequeue. In the
figure, requests from processors P3 and P4 happen to arrive at the same time; each of them, atomically
dequeues a different (head) packet (m1 and m2 in the figure, in an unpredictable order).

Implementations of remote readers may vary. One alternative is to treat incoming request packets as
active messages [10]: upon arrival, the local processor performs the dequeue operation and returns the
dequeued message to the requestor. Another alternative is for the network interface hardware itself to
interpret such request packets and perform the dequeue and dispatch operations [11]; this is analogous to
having a finite-state machine (FSM) within the NI play the role of a (simple) processor running the active
message code. We referred to such a NI capability as “triggering actions in response to events” in section
2.3, and we further use it in sections 3.4, 3.5, and 3.6. The next subsections describe or comment on several
applications of (remote) queues in (asynchronous) I/O processing or in interprocessor communication and
synchronization.

3.1. Queues as Generalization of Single-Item Communication Buffers

The most primitive form of producer-consumer communication is illustrated by the traditional teletype
(tty) style I/O interface. Consider, for example, a keyboard-input interface consisting of one data register
and one status register; the essential part of the status register is the empty/full bit, informing the receiver
whether or not a new data byte has arrived in the data register since the previous one was read. Such
a single-item interface imposes a tight interlocking of producer and consumer rates: if the consumer is
too slow during even a short time period (a single byte-production period), a data-overrun error occurs.
Conversely, if the consumer is too fast, it has to wait, using either polling (busy-wait) or an interrupt
mechanism based on the empty/full bit.

Queues are the generalization of single-item interfaces; the larger they can grow, the more freedom
they allow on producer-consumer rate-difference fluctuation. When there is a single producer and a single
consumer process, it suffices to grow the data part of the interface to a multi-item form, e.g. a circular-
buffer queue. The control part of the interface can still use a single-item form: a single head-tail pointer
pair suffices. On the other hand, when there are multiple producers or multiple consumers, the control
part of the interface must be generalized as well. The next subsection discusses the multiple-producer
case; the multiple-consumer case is analogous, using the remote-dequeue operation, as discussed above.

3.2. Many-to-One Communication

Section 2.4 and figure 4 dealt with multiple producers sending data to a common consumer processor. In
order for data transfers to proceed independent of each other (i.e. without needing prior synchronization),
separate buffer areas must have been preallocated for each communicating pair. Each buffer area has to
have its own control structure, e.g. a head-tail pointer pair, or empty/full bits per sub-block. There are
two costs associated with such a setup. One overhead is for the receiver to poll the several buffer areas in
order to discover where new data have arrived; we discuss this in section 3.4 below.

Another overhead occurs when the number of potential producers is much larger than the number of
actual senders. In a system containing e.g. thousands of communicating processors (or threads), we may
not know a priori which processor will want to send information to a given receiver Pr, and it would be
too expensive to preallocate separate buffer areas at Pr for each and every other processor in the system.
Remote queues (RQ) for control information is the proper solution in this case: a single RQ is set up at Pr

for receiving communication requests by other processors. For every such request received, Pr allocates a
dedicated buffer area, and responds with a pointer (in global address space) to this area. The requesting
processor, then, uses remote DMA to put its data into this buffer.

Manolis G.H. Katevenis

62

3.3. Interrupts replaced by (Multi-Priority) Threads waiting on Queues or RDMA

An (I/O) interrupt is equivalent to a thread switch caused by a (presumably higher-priority) external
event. In future multiprocessor environments (CMP or other), all I/O will be carried through network
packets, similar to the other kinds of IPC. It follows that the only possible “external events” are the arrivals
of particular kinds of network packets. Of particular interest are: (i) the arrivals of the last packet of a
remote DMA “session”, meaning that the receiving processor can now start processing the received data;
and (ii) the arrivals of messages into previously-empty queues, where a thread was waiting to process
messages from that queue. We assume the existence of hardware that switches among threads, especially
when previously-blocked higher-priority threads now become ready to run. The author believes that
interrupts should be replaced by such a mechanism, complemented by a method to register associations
between NI events and processor threads.

3.4. Waiting for any of Multiple Events

There are cases where a thread wishes to wait for the occurrence of any one of a set of “interesting”
events, as with the select system call in Unix, e.g. wait for any one of a set of (remote) queues to become
non-empty, or wait for any one of a set of RDMA transfers to complete. This can be implemented in two
ways. One alternative is for the NI to remember one thread ID per RQ: when an empty RQ becomes
non-empty, that thread get unblocked. Multiple RQ’s may specify the same thread ID to be notified; the
thread should be informed about which RQ woke it up. A problem to be solved is how to inform the
thread about multiple RQ’s becoming non-empty, either before or while the thread starts processing the
first (few) of them.

An alternative implementation can be through a network interface that can trigger actions in response
to events, as discussed above on the occasion of the remote dequeue operation and in section 2.3. Consider
a thread th that wishes to be notified when any RQ in a set Sh of RQ’s becomes non-empty. First, allocate
a “notification” queue Qh for this purpose; make th wait on this single queue Qh. Then, configure all
queues in Sh so that, when they become non-empty, they each send a notification message to queue Sh.
Using this method, thread th waits on a single queue Qh, and finds in that queue a list of all currently
non-empty queues in the set of interest, Sh.

3.5. Locks and Mutual Exclusion: Queueing up for Service

Traditional locks are used to control a set of processors (or threads) so that they can process a shared data
structure in a mutually exclusive, i.e. non-overlapping in time, fashion. In a multiprocessor with remote
queues, the equivalent functionality can be advantageously achieved as follows. The first case is when
the processing to be performed, on behalf of each requesting processor, is less expensive than transferring
the data structure to the requestor. In this case, it is preferable to perform all such processing locally, in
a processor that happens to lie near the data structure (consider the future CMP systems as a “sea of
memory” with processors interspersed in it). To make this work, set up a queue in the memory holding the
data structure. Requesting processors remotely enqueue their request messages, containing the request
arguments, into this queue. A thread on the local processor waits on this queue, and services arriving
requests one at a time. Effectively, mutual exclusion is provided by request messages being atomically
(remote) enqueued.

The second case is when transferring the data structure to the requesting processor is less expensive
than the processing to be performed. In this case, it may be preferable to “ship” the data structure to
one of the requestors, let that processor do its processing, have that processor ship the results back, then
do similarly for another of the requestors, etc. Again, this would use a queue in the memory holding

INTERPROCESSOR COMMUNICATION

63

Addr.
Physical

2

Data

(a) (b)

body hdr
Packet

address
destination
of physical

2 MS bits

SRAM
0

SRAM
1

I/O

1x: I/O
01: SRAM 1
00: SRAM 0

Bridge

Node
2

Node
3

Node
1

Node
0

P

SRAM

00:
1x:
01:

10:
11:P

Fig. 6. (a) Physical address decoding in a uniprocessor; (b) geographical address routing in a MP.

the data structure; request messages are remotely enqueued into it. Either a local thread or the local NI
interprets these request messages: for each of them, ship the data structure (e.g. via RDMA), then wait
for a response (equivalent to releasing the lock), then service another request message, and so on.

3.6. Barrier Synchronization

A small-scale barrier synchronization can be implemented with one node (the “root”) collecting phase-
completion notifications from all participating nodes, and then in turn notifying all of them when that
happens. A large-scale barrier should use a tree of collecting nodes and a tree of notifying nodes, in order
to avoid the root becoming a communication bottleneck. Collecting and counting notifications –either at
a tree node or at the root– can be conveniently done through a queue: each participant remotely enqueues
a phase-completion notification. A computation thread, running on the processor that holds the queue,
dequeues and counts the messages; when the prescribed count is reached, the thread sends a notification
message to its parent node in the tree, or, if it is the root, to all its children. Alternatively, the barrier
could be implemented completely in hardware, if the NI’s can trigger actions in response to events, as
discussed above: each queue may be set up so that it counts packet arrivals. In the present setup, an
event should be signaled not for every packet arrival but when the number of arrivals reaches a prescribed
count (just like a RDMA completion event occurs when the number of byte arrivals reaches a prescribed
count). When this “event” occurs, the NI generates and sends one or more notification messages to other
appropriate queues.

4. NETWORK ROUTING AS GENERALIZATION OF ADDRESS DECODING

Load and store instructions specify a memory address each, thus directing the data transfer to a specific
memory word in a specific memory area. Figure 6(a) illustrates this “directioning” in a traditional
uniprocessor, with a simple example of a memory system consisting of two SRAM chips (or blocks) and
one (memory-mapped) I/O device. The most significant (MS) address bits are decoded and select a chip,
then inside each chip a similar addressing tree directs the data transfer to a specific word in it. If we
consider the data bus as a network connecting the processor to each word in memory, then the role of the
memory address is to route the “access packet” to a specific destination reachable through that network.
In this example, the address under consideration is the physical address of the load or store instruction,
because it is the address that leads the transfer to a specific physical location in the memory or I/O
circuitry.

Figure 6(b) illustrates the analogous situation for IPC –rather than load or store instructions– in a
multiprocessor. A network packet, carrying part of a remote DMA or a remote enqueue message, specifies

Manolis G.H. Katevenis

64

invalid
invaid

d_b
m10100:

101:
110:
111:

m00
m01
d_a
m11

000:
001:
010:
011:

00:

01:

10:

11:

3 virtual page number
address

Translation

physical pages

Disc
Table

Lookup

(a)

011

100000

001

address

?

?

?

?

virtual block number

blocks

3

physicalCompare/Search
Tag

(b)

Fig. 7. Two methods to support data migration: (a) translation table; (b) cache style.

a destination address in its header. The network routes packets based on these destination addresses.
Considering the total memory in the system as a “global memory space”, network routing is clearly seen to
play the same role in the multiprocessor as address decoding played in uniprocessors. In figure 6 addresses
are physical: they correspond to the “geographical” placement of memory modules in the system, and
this correspondence is “hardwired” in the routing function and cannot change at runtime. As we discuss
immediately below, such a correspondence is too restrictive because it does not allow the operating or
runtime system to transparently migrate data. Virtual-to-physical address translation is introduced for
that purpose.

4.1. Address Translation in support of Transparent Data Migration

Performance critically depends on locality, and this dependence becomes stronger and stronger with
successive technology generations –this is the famous “memory wall” problem. Data is continuously
migrated in modern systems, in an attempt to improve locality: as the working set of the data that a
processor accesses changes during the progress of application execution, “old” data are sent further from
the processor and “new” data are brought closer to it.

Some application programs prefer to explicitely control data migration themselves: they specify the
exact moments in time and addresses in space where data transfers should occur. Application developers
do that –e.g. in the embedded domain– in order to achieve predictability in performance-critical appli-
cations that are well enough understood by the programmer for him or her to explicitely specify these
transfers. Such applications that manage data migration themselves can operate with physical memory
addresses, as above: when referring to a specific data structure, the application knows, at each point in
time, which (physical) address to use, depending on where this structure was migrated to last time.

For the majority of the applications, though, data migration is performed transparently to them, by the
operating or runtime system and by the hardware. Figure 7 illustrates the two methods to achieve that.
Address translation, shown in part (a) of the figure, is used when the number of allowed locations, for a
logical item, is large; the operating system uses this method, when migrating data (“paging”) between
main memory and disk. This method uses a list (translation table) of all logical items (virtual pages);
for each of them, the list specifies its physical location. Cache lookup, shown in part (b) of figure 7, is
the other method for transparent data migration; the hardware uses this method when migrating data
between dynamic RAM and various SRAM blocks –some closer to the processor and some further away
from it (the levels of the cache hierarchy, or other processors’ caches). Cache lookup avoids the delay of

INTERPROCESSOR COMMUNICATION

65

0100
00xx
1xxx
011x

0010
000x

1110
1111

110x
10xx

1000
101x
1001

1001

110x

1001

Tbl_A
Tbl_B

Tbl_D1
Tbl_D3

pg9’

pg9

Tbl_C Tbl_D2

Domain D

P

Fig. 8. Progressive translation/routing: packets carry virtual addresses, tables provide physical route
(address) for the next few steps.

the translation table by restricting the number of locations that each logical item is allowed to migrate
to (using set associativity); on the other hand, it introduces the cost of searching for the desired item by
performing multiple tag comparisons –often in parallel, consuming energy. Cache lookup is not scalable
to cases where data are allowed to migrate far away: it requires a broadcast of the search tag and multiple
comparisons.

4.2. Progressive Translation for Localized Updates upon Migration

Old uniprocessors performed virtual-to-physical address translation at only one place –the processor’s
TLB. Newer systems need multiple TLB’s –one per processor, plus a TLB in the network interface, in
order to provide user-level access to the NI: the user must provide virtual addresses as arguments, and
the NI has to perform the (protected) translation to physical addresses for the operation to be executed.
When a data item (e.g. a page) migrates, all copies of the translation table or portions thereof (e.g.
TLB’s) need to be updated, which is a problem as this number increases. For scalable multiprocessing,
this system has to be revised: we cannot afford all virtual-to-physical address translation to occur at the
source node of an IPC packet, because that would mean that all nodes (may) know the current (physical)
location of all (virtual) data objects, hence all nodes may have to be notified when an object is migrated.

Figure 8 illustrates a multi-level translation scheme that can solve this problem; let us call it progressive
translation. Each packet (imagine that it starts from processor P) may pass through several translation
tables on its way to its destination. The packet always carries its virtual destination address. Each
translation (routing) table directs the packet for a few more steps (through a few more switches –the
round devices in the figure) towards its final destination. Each table contains accurate (definitive) location
(routing) information for the data items (e.g. pages) that are close to it, but only approximate information
for those that are further away: “go to that table and ask there”, it says....

Imagine, in figure 8, that (virtual) page 1001 migrates from (physical) page-frame pg9 to frame pg9′,
and that, while doing so, it stays within the same domain (neighborhood) D. Then, only the transla-
tion/routing tables at the entries of and inside D need to be updated –assuming that all external tables
merely point to an entry point into D, rather than specifying exact location within D.

Figure 8 also illustrates a couple of practical aspects of progressive translation. The function of
the tables can be interpreted to be to provide run-time configurable network routing, rather than fixed
“geographic” routing: each destination address is allowed to change its location in the net. However, it
would be too expensive, in general, to provide this capability inside each network switch –especially so
inside the switches of networks-on-chip (NoC). The figure shows individual switches as little circles, and
shows translation/routing tables positioned every few switches –but not in every single switch. Each table
provides physical route information through a sub-net –but not through the entire, system-wide network.

Manolis G.H. Katevenis

66

For example, in a CMP, each processor may have a TLB containing information only about on-chip data,
while off-chip data are only described in table(s) residing at the off-chip interface(s). This placement of
tables as interfaces between sub-networks is similar to the “routing filters” in the “Wormhole IP over
ATM” proposal [12].

In a large multiprocessor system, with the many millions of objects in its global address space, trans-
lation/routing tables would be hopelessly large, if we could not aggregate together entries referring to
objects that are nearby in both logical and physical space. Variable-size pages allow this in a convenient
way –figure 8 assumes this by including “don’t care” bits (marked x) in page numbers. An implementation
problem (cost) will arise when a small portion of a larger space migrates to a physical area outside the
location of the large space –e.g., in the figure, if page 1001 were to migrate to the far left, outside the
region seen as 1xxx by processor P . Internet routing tables handle such situations using longest-prefix
matchings: when the table contains both an entry for 1xxx and 100x, addresses 1000 and 1001 are trans-
lated using the latter (longest) entry that they match, 100x, while addresses 1010, 1011, 1100, ..., 1111
are translated using the former entry. Searching through such tables at high speed is expensive, but at
least the problem has been researched extensively [13].

4.3. Protection, seen as a case of Firewalling

Besides migration support, the other fundamental reason to use virtual addresses is protection: not all
processes are allowed to generate all addresses hence access all data. In a system like the one of figure 8,
the first line of protection is at the processor generating the IPC operation: the operating system must
ensure that the process has access permission to the virtual addresses that it specifies. In large systems,
it is further desirable to be able to partition the machine so that one partition does not even trust the
operating system of the other. In figure 8 this can be achieved by having the translation/routing tables
at the entry points of a partition –e.g. Tbl D1, Tbl D2, Tbl D3 for partition D– operate like Internet
firewalls: have a list of critical data objects (address regions) in partition D that processes running outside
D are not allowed to access, hence filter out and drop all such “illegal” packets entering D from the outside.

4.4. Where to keep Flow and Congestion Control State

One of the hardest problems in interconnection networks is flow –and especially congestion– control.
Effective solutions to these control problems generally need to keep per-destination state. In a system
like the one of figure 8, the translation/routing tables only seem as a natural place for maintaining such
state, since their entries are related to geographical locations through the net. The fact that single entries
may correspond to very large subnetworks that are very far away may not be a problem, but rather a
challenge for hierarchical flow/congestion control.

5. CONCLUSION

Interprocessor communication (IPC) is increasingly important in the future systems with increasing num-
bers of (cooperating) processors. IPC is a case of locating and transporting data. Data transport is
the generalization of load and store instructions from one word to arbitrary sizes: remote DMA. Syn-
chronization (coordination) of communicating processes can be advantageously done through (remote,
multi-access) queues. Identifying and locating data objects –i.e. addressing– should be done so that
migration and protection are supported. In this respect, large-scale multiprocessors may have to adopt
some of the techniques used in Internet routers.

INTERPROCESSOR COMMUNICATION

67

6. ACKNOWLEDGMENTS

The viewpoint and opinions expressed in this paper have been reached by the author following the discus-
sions and the work performed within the “Scalable Computer Architecture (SARC)” integrated project
#27648 of FP6, supported by the European Commission. These discussions have been led and steered by
Stamatis Vassiliadis; the project itself owes its existence to Stamatis Vassiliadis. Stamati, thank you! –I
miss you; our project and our scientific community misses you; Samos is missing you. It is too bad that
you departed so soon –you could have helped us much more, we would have enjoyed your company much
more. –farewell dearest compatriot, colleague,
friend; we will remember you forever!

Other colleagues who helped formulate these views include Stamatis Kavadias, Georgi Gaydadjiev,
Michael Papamichael, Angelos Bilas, Babak Falsafi, Christos Sotiriou, Spyros Lyberis, Vasilis Papaefs-
tathiou, George Kalokerinos, Manolis Marazakis, Angelos Ioannou, Jose Duato, and Ian Johnson. Many
thanks to all of them!

7. REFERENCES

[1] D. Pham et al., “The design and implementation of a first-generation CELL processor,” in Proc. IEEE Int.
Solid-State Circuits Conference (ISSCC), Feb. 2005.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way multithreaded SPARC processor,” IEEE
Micro, vol. 25, no. 2, pp. 21–29, Mar. 2005.

[3] Intel, “World’s first quad-core processors for desktop and mainstream servers,” in http://www.intel.com/quad-
core/.

[4] S. Mukherjee and M. Hill, “A survey of user-level network interfaces for system area networks,” in Tech. Report
1340, Computer Sci. Dept., Univ. of Wisconsin, Madison USA, 1997.

[5] S. Mukherjee, B. Falsafi, M. Hill, and D. Wood, “Coherent network interfaces for fine-grain communication,”
in Proc. 23rd Int. Symposium on Computer Architecture (ISCA’96), Philadelphia, PA USA, May 1996, pp.
247–258.

[6] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and
C. Dodd, “The virtual interface architecture,” IEEE Micro, vol. 18, no. 2, pp. 66–76, 1998.

[7] G. Gaydadjiev, “Personnal communication,” 2006.

[8] S. Keckler, W. Dally, D. Maskit, N. Carter, A. Chang, and W. Lee, “Exploiting fine-grain thread level paral-
lelism on the MIT Multi-ALU processor,” in Proc. 25th Int. Symposium on Computer Architecture (ISCA’98),
June 1998, pp. 306–317.

[9] E. Brewer, F. Chong, L. Liu, S. Sharma, and J. Kubiatowicz, “Remote queues: Exposing message queues for op-
timization and atomicity,” in Proc. 7th ACM Symposium on Parallel Algorithms and Architectures (SPAA’95),
Santa Barbara, CA USA, June 1995, pp. 42–53.

[10] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages: A mechanism for integrated
communication and computation,” in Proc. 19th Int. Symposium on Computer Architecture (ISCA’92), Gold
Coast, Australia, May 1992, pp. 256–266.

[11] S. Kavadias, “Network interface support for synchronization primitives,” in HiPEAC ACACES summer school
Poster Session, L’Aquilla, Italy, July 2006.

[12] M. Katevenis, I. Mavroidis, G. Sapountzis, E. Kalyvianaki, I. Mavroidis, and G. Glykopoulos, “Wormhole IP
over (connectionless) ATM,” IEEE/ACM Trans. Networking, vol. 9, no. 5, pp. 650–661, Oct. 2001.

[13] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of IP address lookup algorithms,”
IEEE Network, vol. 15, no. 2, pp. 8–23, Mar. 2001.

Manolis G.H. Katevenis

68

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

