Replicate and Migrate Objects in the Runtime

—not Cache Lines or Pages in Hardware

Manolis Katevenis
FORTH-ICS and Univ. of Crete, Greece

BMW — October 2010

Acknowledgements

* Alex Ramirez Vassilis Papaefstathiou
* Dimitris Nikolopoulos e Stamatis Kavadias
* Dionisios Pnevmatikatos e Spyros Lyberis

Georgi Gaydadjiev

Panagiota Fatourou

Polyvios Pratikakis

This version of the slides includes post-talk comments, based on discussions at
the end of the talk —see (new) slide 19— as well as an improved slide 22

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

Outline

e Opportunity: Reduce Network Traffic (= Energy too) by:
— Transferring data if and when needed by the application
— Transferring data in units of “objects” —not cache lines or pages

— Knowing where each object version currently resides

* New Parallel Programming Models and Runtime Systems know
how to achieve these

= Cache Coherence and Paging duplicate the effort of the Runtime!

e Hierarchical Data Structures and Algorithms are needed

Manage Obijects, not Lines or Pages - M. Katevenis - BMW'10

Parallel Computation: Graph of Producers-Consumers

Producer... ... Consumer —> T7 - >0 0 o
Task 1 T.4 — > T.6re
i O T.8
... Consumer
TaSk 2 T5 ——Pp> © o ©
\
Task 3 > T9 [>eeo

... Consumer

e Producer (writer) - Consumers (readers) pattern is universal —
not just in stream processing

Manage Obijects, not Lines or Pages - M. Katevenis - BMW'10

Task Input & Output Data Sets Managed by the Runtime

Processor ‘ T Execute R
the Task @
@ Il \‘ B /@7_

w w
o o
"z Replicate/Prefetch : —— o =
o Input Data Set - o
e — 1 P . LLocalMemory | Quytput DataSet L ¢
o 2 \\\ f : //4 \\\ ()
= — y— >
— \\\ - L) 3 -
@ ‘)
- ' -
O _ @)
Other Memory Hierarchy

* Recent work on Task-based models where programmer identifies
input & output data sets, and Runtime manages their replication /
migration: bring local copy before starting up task execution

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

Live — Dead Words or Lines: Opportunity for Optimizations

Write Write
(other writes are rare)

read read Last Read
| | time
|

| | |
~ > H

Dead Live ~ Dead Live

e Task input & output data buffer areas have live and dead periods

Manage Obijects, not Lines or Pages - M. Katevenis - BMW'10

Dead Line Eviction

@ Read

Cache
P
~+ @ | |
wite L
7 =

@ Last Read]

-

Other line fetched

X write—back unnecessary!

\/

Lower levels of the Memory hierarchy

* |f we know that the cache line being evicted is dead, we
don’t need to write it back, even if marked “dirty”

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

Writing into a Dead Line

Cache

not
needed

RDMA

new

SIE/|ERE e =

write word

Cache

inv

alidate |

5

A

A A

not
needed

not ¢ i<
needed fet/ch

oldl confents

Memory

* |If we know that we are writing into a dead line, we do not need to:
— have flushed it before
— invalidate other (knowingly dead) copies
— fetch old (dead) contents from last valid holder

Manage Objects, not Lines or Pages - M. Katevenis -

BMW'10

e Kaxiras e.a.

o

C

tear-off
opies”

Fetch Block (“Object”) versus Fetch Lines

P P P P
RDMA
read
req _ B request N
S 2| RDMA
) a . < write
data data
Coherent Caches Local (Scratchpad) Memories or

Non-Coherent (Expl. Mng’d) Caches

* Large blocks = save ~ 50 % of the network packets

— although saved packets are small, routing decisions consume energy

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 9

Know Where to fetch from, versus ask a Directory

P P P P
RDMA
read
request
fetched “| RDMA
data - write
- data
NoC /// NoC
LYR / .
requests forwarded Local (Scratchpad) Memories or
to fetch | Coherence |’ requests ,
Directory Non-Coherent (Expl. Mng’d) Caches

* Coherent cache directories tell —in case you don’t already know it:
— where is the most recent (currently valid) copy
— where are all other copies —for invalidation, if unaware of being dead

Manage Objects, not Lines or Pages -

M. Katevenis -

BMW'10 10

SARC: Local Mem & RDMA vs Coherent Caches & Prefetch

* SARC project (FET IP —2006-10) - IEEE Micro Magazine, Oct. 2010:
GEMS-based simulation with up to 64 in-order cores

MOESI directory-based coherent caches (distributed directories)
— Harware strided prefetcher

vs. Local (Scratchpad) Memories and (our optimized) Remote DMA
GARNET NoC models (concentrated 2D mesh — 4 cores/router)
ORION 2.0 NoC power models (65nm)

* Four benchmarks kernels with diverse communication patterns

— Algorithm and data layout separately tuned for each architecture
— data set fits on-chip, and stays fixed when # of cores increases
— Smith-Waterman (64 cores): RDMA 40% faster, vs destructive early prefetching

— Bitonic Sort (64 cores): RDMA 40% faster, vs prefetcher cannot predict pattern
— Jacobi (64): RDMA 13% faster; FFT (64): RDMA 16% faster — RemSt 25% faster

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 11

On-Chip Traffic Volume (Bytes)

Jacobi FFT
B DATA ™ CONTROL B DATA ™ CONTROL

e
~
o
w

(o))
o

wn
o
N

S
o

Normalized Packet Volum
= N W
o o o
|
Normalized Packet Volume
o =
O Ul -~ U N U1 W N
|

zZI<zIg<dzIdgdzrgzIg<zzIg zrg<rzrdprzrs<rzdprzz<EzT s
I PSPPSRI <2222l 2202 2
S w o dw A Jwodwa Jdwaodwo Jwas duwuwosduwlaosFuldsFduwulosFwulds
el T e T T A T e T2 T T T T T i T N
wl wl wl wl wl wl wl o w oc w o wl oc w o w o
o o o o o o o o o o o o
a. a a. a. a. a. o a. a [a W a. [a
2 4 8 16 32 64 2 4 8 16 32 64
Cores No. Cores No.

e RDMA close to “zero” control volume
* Jacobi (64cores): RDMA: 4x less volume

— caches: cache-lines ping-pong among caches

* FFT (64 cores): RDMA: 2.8 x less volume — Remote Stores: 1.8 x less volume

— caches: barrier synchronization contributes considerable traffic

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

NoC Energy Analysis

FFT
B STATIC “ DYN_PLAIN M DYN_PREF ® DYN_RDMA ® DYN_RMST

Jacobi
B STATIC " DYN PLAIN ™ DYN PREF ™ DYN RDMA

1S N3y
VINQY

NIVid

HO13434d

64

1S N3
VINQY

NIV1d

VINQY

[NIV1d

| HD.1343Yd
1S IN3Y

HO13434d

32

16

VINGY

[NIV1d

1S W3y

HO13434d

VINGY

NIV1d

VINQY

NIVid

1S N3
| HD.1343Yd
1S N3Y

HO13434d

A3a3u3 HON pazijewaoN

VINQY

NIVild

HJ13434d

64

VINQY

HJ13434d

H NIV1d
VINGY

HJ13434d

[NIV1d

32

16

VINQY

NIV1d

HJ13434d

VINQY

HJ13434d

NIV1d
VINQY

HJ13434d

| NIVld

T i

< 0 © <% o O
o O O O

A3i3u3 HON pazijewaoN

Cores No.

Cores No.

less NoC energy than prefetching

 Jacobi (64 cores): RDMA 60%

* FFT (64 cores): RDMA 35% less NoC energy than prefetching

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

NoC Power Analysis

Jacobi FFT

M STATIC ™ DYN_PLAIN ™ DYN_PREF ™ DYN_RDMA B STATIC ™ DYN_PLAIN ™ DYN_PREF ™ DYN_RDMA ™ DYN_RMST

s 16 s 1.2

S 14 S 1

(o) [

a 1.2 a

o 1 G 08

(e] (o]

Z 08 2 0.6

© e

g 0.6 go04

£ 0.2 £~

S 0 e e R, S 0

© ZzszssEzzsziszsssss f EEELEZESREEILEISSREIEIGEISS

< < < < | < || < | < | < | <
Sl il il =i =l Sb2s25253L2525052L235253
o o o o o o e € g & g € g € g < g
[a W [a W [a W Q. [a W [a W (a W [a W o o [a W [a
2 4 8 16 32 64 2 4 8 16 32 64
Cores No. Cores No.

* RDMA reduces total NoC power while prefetching increases it!
— 15% - 30% (64 cores) compared to plain caches
— 20% - 50% (64 cores) compared to prefetching
— higher gains in dynamic power

* Injecting less packets clearly improves NoC energy and power consumption

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

REM_ST

Outline

* Transfer Objects when & where needed: Reduce Network Energy

* New Parallel Programming Models and Runtime Systems know
how to achieve these

= Redundant Hardware —avoid duplication of effort:
— Coherence Directories (where each cache line currently resides)

— Page Tables (where each “logical” page currently resides)

e Hierarchical Data Structures and Algorithms are needed

Manage Obijects, not Lines or Pages - M. Katevenis - BMW'10

15

Task Input/Output Data Sets Managed by Runtime

* New, promising, task-based parallel programming paradigm:

* Programmer/compiler identifies input & output data sets of tasks;
* Runtime compares these to detect dependencies/parallelism;

* Runtime uses this info to schedule tasks to processors;

* Runtime issues commands to replicate locally the input data set,
allocate space for the output data set, run task, notify next tasks.

e E.g.: StarSs, OpenMPT, CellMP, TPC, CellGen, Sequoia, Prometheus

= When these are available — when I/O data sets are known:
* Cache coherence and directories are superfluous, unnecessary

— runtime explicitely replicates/migrates/invalidates the “objects”
that constitute the input/output data sets — data flow style

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 16

Puzzled: Is Virtual-to-Physical Address Translation needed?

..when Objects are replicated/migrated by the Runtime...

Virtual Memory is used to:
1. Protection among processes

— Can solve this in less expensive ways — see next slide
2. Swap pages to disk

— Runtime knows what it has swaped where, and when to bring back
3. Load and run code at addresses # address compiled at

— Dynamically-linked libraries have already solved this
4. Migrate pages among various localities of physical memory

— Task receives pointers from runtime to current |/O data set positions

— Sub-arrays: index-to-address calculation uses current base address
— Pieces of large data structures with internal pointers: Problem!...

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 17

SARC Protection Model without Address Translation

Prot’cn
Domain
1

Prot’cn
Domain
2

(@)

Global Virtual
Address Space

Physical
Address

Space

Global Virtua

Prot'cn
Domain
1

ddress Space

able to
generate
any address,
but...

Prot'cn
Domain

2

/
/

only addresses

__—Inthese ranges

pass
access rights
check

(b)

(a) Traditional; (b) SARC, e.g. 8 allowed ranges (base-bound reg’s) per domain

Manage Objects, not Lines or Pages -

M. Katevenis -

BMW'10

18

Discussion: Fragmentation, Mem.Space Revocation

1. Aspects of proposed protection (slide 18) and hierarchical data
structures (slide 22) remind the MULTICS operating system

2. Paging (slide 17) also resolves the fragmentation problem:

— malloc large virtually contiguous address space when the free
physical space is fragmented

— counter-arguments:

— avoid fragmentation anyway, to economize on TLB size/efficiency
— input/output data sets of “reasonable” size avoid fragmentation
— data sets of “few” tasks in local memory, at any given time

3. How does the OS (quickly) revoke physical memory space from a
process in order to give that to another process that needs it?

— using access rights (protection mech.), after notifying the runtime

4. Physical memory fragmentation (in-node, across nodes)
increases number of entries in hardware protection table

— response: entire, contiguous nodes allocated to each prot. domain

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 19

Outline

* Transfer Objects when & where needed: Reduce Network Energy

* New Parallel Programming Models and Runtime Systems know
how to achieve these

= Cache Coherence and Paging duplicate the effort of the Runtime!

* Hierarchical Data Structures and Algorithms are needed:
— Worth the effort — do not expect everything to be done automatically
— Like Data Base community: disk-resident data structures & algorithms

Manage Obijects, not Lines or Pages - M. Katevenis - BMW'10 20

Large Data Structures with Pointers: the Old Model

P | Cache P | Cache

@ @ lock, fetch, op,... @ @
lock |/ fetch record, ook fetch,
Memories... operate, unlock op,...

A

‘f
= = .@jﬂj @

\J

A

* Small records, randomly linked, scattered all over the memories...
* Tasks operate from a distance, using locks & coherent caching

* Unknown task data set, except for either tiny task (single record)
or huge data set (entire data structure) —hence non replicatable

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

Need new Pointer Data Structures & Algorithms

local processor for each memory operates onto its substructure(s)

PN I

P P P
: : 1
LM or é%ache LM or Cache LM or Cache
\ y

>
S — < \\ gl -
& 1 Y \ o
% — 5 o O : [v %
o0 0o «gq o ' e L 4 * E

Hierarchical: large-block substructures, Intra-pointers, Inter-pointers
Like disk-resident data bases: specific data structures & algorithms
Intra-pointers stay valid upon migration, like relocatable code
Inter-pointers must go thru runtime tables & dependence checks

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 22

Conclusions

“Object” = unit of task input or output data set (variable size)
Let the Runtime System keep track of Objects —not pages

Let the hardware transfer Objects under runtime control
— not cache lines under control of simplistic hardware protocols

Non-hierarchical data structures, with small records allocated
at random places, do not scale to massively parallel systems

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10 23

Backup Slides

Data Transport and Synchronization (1/2)

Smith-Waterman Jacobi

%PERFECT *RDMA PREFETCH --PLAIN %PERFECT +RDMA =PREFETCH --PLAIN
35 80
30 70
60
%25 S50
3% D 40

(] (o))

%15 2 39
5 10
0

0O 8 16 24 32 40 48 56 64 0O 8 16 24 32 40 48 56 64

Cores No. Cores No.

 RDMA follows closely the “PERFECT” case (1cc memory accesses)
* Smith-Waterman (64cores): RDMA 40% faster

— HW Prefetcher: early prefetching (destructive)
* Jacobi (64cores): RDMA 13% faster

— HW Prefetcher: directories contention
Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

Data Transport and Synchronization (2/2)

Bitonic FFT
*PERFECT +RDMA EPREFETCH <-PLAIN PERFECT-©-REM_ST-4RDMA -E-PREFETCH-¢-PLAIN
80 70
70 60
60
Q 9.50
5 50 3 10
-840 ®
(] ()] 30
&30 by
20 20
10 10
0 0
0O 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64

Cores No. Cores No.

 Bitonic Sort (64cores): RDMA 40% faster
— HW Prefetcher: cannot predict the pattern

FFT (64cores): RDMA 16% faster — Remote Stores 25% faster
— HW Prefetcher: learning period not amortized

— RDMA: massive initiation of short RDMAs
Manage Objects, not Lines or Pages - M. Katevenis - BMW'10

