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Outline

e Opportunity: Reduce Network Traffic (= Energy too) by:
— Transferring data if and when needed by the application
— Transferring data in units of “objects” —not cache lines or pages

— Knowing where each object version currently resides

* New Parallel Programming Models and Runtime Systems know
how to achieve these

= Cache Coherence and Paging duplicate the effort of the Runtime!

e Hierarchical Data Structures and Algorithms are needed
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Parallel Computation: Graph of Producers-Consumers
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e Producer (writer) - Consumers (readers) pattern is universal —
not just in stream processing
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Task Input & Output Data Sets Managed by the Runtime
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* Recent work on Task-based models where programmer identifies
input & output data sets, and Runtime manages their replication /
migration: bring local copy before starting up task execution
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Live — Dead Words or Lines: Opportunity for Optimizations
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e Task input & output data buffer areas have live and dead periods
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Dead Line Eviction
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* |f we know that the cache line being evicted is dead, we
don’t need to write it back, even if marked “dirty”
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Writing into a Dead Line
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* |If we know that we are writing into a dead line, we do not need to:
— have flushed it before
— invalidate other (knowingly dead) copies
— fetch old (dead) contents from last valid holder
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Fetch Block (“Object”) versus Fetch Lines
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* Large blocks = save ~ 50 % of the network packets

— although saved packets are small, routing decisions consume energy
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Know Where to fetch from, versus ask a Directory
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* Coherent cache directories tell —in case you don’t already know it:
— where is the most recent (currently valid) copy
— where are all other copies —for invalidation, if unaware of being dead
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SARC: Local Mem & RDMA vs Coherent Caches & Prefetch

* SARC project (FET IP —2006-10) - IEEE Micro Magazine, Oct. 2010:
GEMS-based simulation with up to 64 in-order cores

MOESI directory-based coherent caches (distributed directories)
— Harware strided prefetcher

vs. Local (Scratchpad) Memories and (our optimized) Remote DMA
GARNET NoC models (concentrated 2D mesh — 4 cores/router)
ORION 2.0 NoC power models (65nm)

* Four benchmarks kernels with diverse communication patterns

— Algorithm and data layout separately tuned for each architecture
— data set fits on-chip, and stays fixed when # of cores increases
— Smith-Waterman (64 cores): RDMA 40% faster, vs destructive early prefetching

— Bitonic Sort (64 cores): RDMA 40% faster, vs prefetcher cannot predict pattern
— Jacobi (64): RDMA 13% faster; FFT (64): RDMA 16% faster — RemSt 25% faster
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On-Chip Traffic Volume (Bytes)
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e RDMA close to “zero” control volume
* Jacobi (64cores): RDMA: 4x less volume

— caches: cache-lines ping-pong among caches

* FFT (64 cores): RDMA: 2.8 x less volume — Remote Stores: 1.8 x less volume

— caches: barrier synchronization contributes considerable traffic
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NoC Energy Analysis
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 Jacobi (64 cores): RDMA 60%

* FFT (64 cores): RDMA 35% less NoC energy than prefetching
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NoC Power Analysis

Jacobi FFT
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* RDMA reduces total NoC power while prefetching increases it!
— 15% - 30% (64 cores) compared to plain caches
— 20% - 50% (64 cores) compared to prefetching
— higher gains in dynamic power

* Injecting less packets clearly improves NoC energy and power consumption
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Outline

* Transfer Objects when & where needed: Reduce Network Energy

* New Parallel Programming Models and Runtime Systems know
how to achieve these

= Redundant Hardware —avoid duplication of effort:
— Coherence Directories (where each cache line currently resides)

— Page Tables (where each “logical” page currently resides)

e Hierarchical Data Structures and Algorithms are needed
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Task Input/Output Data Sets Managed by Runtime

* New, promising, task-based parallel programming paradigm:

* Programmer/compiler identifies input & output data sets of tasks;
* Runtime compares these to detect dependencies/parallelism;

* Runtime uses this info to schedule tasks to processors;

* Runtime issues commands to replicate locally the input data set,
allocate space for the output data set, run task, notify next tasks.

e E.g.: StarSs, OpenMPT, CellMP, TPC, CellGen, Sequoia, Prometheus

= When these are available — when I/O data sets are known:
* Cache coherence and directories are superfluous, unnecessary

— runtime explicitely replicates/migrates/invalidates the “objects”
that constitute the input/output data sets — data flow style
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Puzzled: Is Virtual-to-Physical Address Translation needed?

..when Objects are replicated/migrated by the Runtime...

Virtual Memory is used to:
1. Protection among processes

— Can solve this in less expensive ways — see next slide
2. Swap pages to disk

— Runtime knows what it has swaped where, and when to bring back
3. Load and run code at addresses # address compiled at

— Dynamically-linked libraries have already solved this
4. Migrate pages among various localities of physical memory

— Task receives pointers from runtime to current |/O data set positions

— Sub-arrays: index-to-address calculation uses current base address
— Pieces of large data structures with internal pointers: Problem!...
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SARC Protection Model without Address Translation
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Discussion: Fragmentation, Mem.Space Revocation

1. Aspects of proposed protection (slide 18) and hierarchical data
structures (slide 22) remind the MULTICS operating system

2. Paging (slide 17) also resolves the fragmentation problem:

— malloc large virtually contiguous address space when the free
physical space is fragmented

— counter-arguments:

— avoid fragmentation anyway, to economize on TLB size/efficiency
— input/output data sets of “reasonable” size avoid fragmentation
— data sets of “few” tasks in local memory, at any given time

3. How does the OS (quickly) revoke physical memory space from a
process in order to give that to another process that needs it?

— using access rights (protection mech.), after notifying the runtime

4. Physical memory fragmentation (in-node, across nodes)
increases number of entries in hardware protection table

— response: entire, contiguous nodes allocated to each prot. domain
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Outline

* Transfer Objects when & where needed: Reduce Network Energy

* New Parallel Programming Models and Runtime Systems know
how to achieve these

= Cache Coherence and Paging duplicate the effort of the Runtime!

* Hierarchical Data Structures and Algorithms are needed:
— Worth the effort — do not expect everything to be done automatically
— Like Data Base community: disk-resident data structures & algorithms

Manage Obijects, not Lines or Pages - M. Katevenis - BMW'10 20



Large Data Structures with Pointers: the Old Model
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* Small records, randomly linked, scattered all over the memories...
* Tasks operate from a distance, using locks & coherent caching

* Unknown task data set, except for either tiny task (single record)
or huge data set (entire data structure) —hence non replicatable

Manage Objects, not Lines or Pages - M. Katevenis - BMW'10




Need new Pointer Data Structures & Algorithms

local processor for each memory operates onto its substructure(s)
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Hierarchical: large-block substructures, Intra-pointers, Inter-pointers
Like disk-resident data bases: specific data structures & algorithms
Intra-pointers stay valid upon migration, like relocatable code
Inter-pointers must go thru runtime tables & dependence checks
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Conclusions

“Object” = unit of task input or output data set (variable size)
Let the Runtime System keep track of Objects —not pages

Let the hardware transfer Objects under runtime control
— not cache lines under control of simplistic hardware protocols

Non-hierarchical data structures, with small records allocated
at random places, do not scale to massively parallel systems
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Data Transport and Synchronization (1/2)

Smith-Waterman Jacobi
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 RDMA follows closely the “PERFECT” case (1cc memory accesses)
* Smith-Waterman (64cores): RDMA 40% faster

— HW Prefetcher: early prefetching (destructive)
* Jacobi (64cores): RDMA 13% faster

— HW Prefetcher: directories contention
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Data Transport and Synchronization (2/2)

Bitonic FFT
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 Bitonic Sort (64cores): RDMA 40% faster
— HW Prefetcher: cannot predict the pattern

FFT (64cores): RDMA 16% faster — Remote Stores 25% faster
— HW Prefetcher: learning period not amortized

— RDMA: massive initiation of short RDMAs
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