

! IEEE 2010 - Appears in IEEE Conference on Cluster Computing, September 2010, Heraklion, Crete, Greece 1

Low-latency Explicit Communication and Synchronization in

Scalable Multi-core Clusters

Christoforos Kachris, George Nikiforos, Vassilis Papaefstathiou,

Xiaojun Yang, Stamatis Kavadias, Manolis Katevenis

Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH)

Heraklion, Crete, Greece

e-mail: {kachris, nikiforg, papaef, yxj, kavadias, kateveni}@ics.forth.gr

Abstract— One of the main challenges in the multi-core area is

the communication and synchronization of the cores and the

design of an efficient interconnection network that is scalable

to multiple cores. In this paper we present an efficient

implementation of a scalable system that is targeting multi-

core systems. Each cluster node consists of 4 processors that

support both explicit and implicit communication. Processor’s

cache is augmented with scratchpad and is merged with the

network interface (NI) for reduced communication latency. All

nodes are connected through a novel layer-2 switch that can

support up to 20 nodes. The proposed system is designed and

implemented using multiple FPGA boards and the

performance evaluation presents the aggregate throughput of

the system (with 16 processors) and the communication latency

between that cluster nodes.

Keywords: multi-cores systems, FPGAs, explicit and implicit

communication, merged cache-network interface

I. INTRODUCTION

As the number of processing core per chip increases, so

does the need for efficient and high-speed communication

and synchronization support, so that applications can exploit

the available cores. The memory hierarchies of these multi-

core systems are based on one of the two dominant schemes

-multilevel caches, or directly-addressable local scratchpad

memories. Caches transparently decide on the placement of

data, and use coherence to support communication, which is

especially helpful in the case of implicit communication, i.e.

when we do not know in advance which input data will be

needed, or who last modified them. However, caches lack

deterministic response time, and make it harder to the

software to explicitly control and optimize data locality and

transfers in the cases when it can intelligently do so.

Furthermore, coherent caches scales poorly.

On the other hand, scratchpads offer predictable

performance which is required in real-time applications.

They also offer scalable general purpose performance by

allowing explicit control and optimization of data placement

and transfers. In the case of scratchpad, the interprocess

communication is explicit meaning that the software (the

application, or compiler, or runtime system) is able to

indicate physical placement or transfers. The explicit

communication is mainly based on remote direct memory

accesses (RDMA) that is efficient and it becomes possibly

in cases when the producer knows who the consumer will be.

The main drawback of the scratchpad is that it reduces the

programming efficiency, since extra effort must given to the

synchronization and the consistency of the system.

Furthermore, the main challenges in these multi-

processor systems is the design of an efficient inter-

connection scheme that achieves high throughput and low

latency communication. In the domain of Chip-Multi-

Processors (CMP) several schemes have been proposed for

the interconnection of the tiles such as mesh, concentrated

mesh, torus, etc. These interconnection schemes provide

high throughput but introduce significant latency. On the

other hand, interconnections based on crossbars can achieve

high throughput while also introducing lower latency [1].

The proposed interconnection scheme is targeting a multi-

processor FPGA-based system that spans over several

boards [2] [3]. It consists of multiple processing nodes (each

consisting of 4 processors connected using a level-1 switch)

and a level-2 off-chip interconnection network as shown in

Figure 1.

Fig. 1. Prototype block diagram

In this paper we focus on an efficient FPGA

implementation of a scalable hierarchical system that

consists of an efficient level-2 off-chip switch and each

node consists of 4 processors that support both explicit and

implicit communication and synchronization. The proposed

system can support up to 20 nodes (80 processors) and the

total aggregate throughput in the level-2 switch is 62.5Gbps.

The main features of the proposed system are:

! Each cluster consists of 4 processors with explicit

communication and synchronization

! Each processor’s cache is merged with the scratchpad

and the NI

! IEEE 2010 - Appears in IEEE Conference on Cluster Computing, September 2010, Heraklion, Crete, Greece 2

! Switch size: up to 20x20 or 6x6(with 3planes) clusters

! Line speed rate: 3.125 Gbps

! Supports variable-size packet from 8 to 70 bytes.

! Flow control: 14 packet-based credits

! High performance: high sustainable throughput under

a wide range of traffic models and low latency

! QoS support: fault-tolerant, traffic priority support

! Priority service: 3-level priority

The paper is organized as follows. Section II describes

the explicit communication and synchronization of the

processors across the scalable platform. Section III presents

the level-2 switch, used to connect the clusters, which is

based on a novel sequential iterative matching algorithm.

Section IV presents the performance evaluation of the

system using up to 4 clusters (16 cores). Finally, Section V

concludes the paper.

II. EXPLICIT COMMUNICATION AND SYNCHRONIZATION

This section describes the architecture of our local

memory, which can be dynamically configured as partly-

cache and partly-scratchpad, and also describes the software

interface to the hardware mechanisms for explicit

communication and synchronization. These are all based on

common hardware actions, thus unifying the cache

controller and the network interface: for each access, check

the state and tag bits of the addressed line, and act

accordingly.

We generalize the traditional approach where the

processor uses I/O control and status registers to initiate

operations and poll for status or wait for notifications. In

order to increase parallelism, multiple pending operations

are supported, by means of multiple control and status

registers. To reduce overhead, these multiple registers are

virtualized, so as to be accessible in user-mode. We bring

these mechanisms close to the processor, into caches, to

reduce latency. To allow parallel access, we target private -

as opposed to shared- caches, and integrate our NI

mechanisms into second-level (L2)-as opposed to L1-

caches, in order to provide sufficient scratchpad space for

application data without affecting the processor clock

(however the ideas are general and independent of that

choice).

A. Memory Access Semantics: Cache, Scratchpad, NI

To integrate cache, scratchpad, and communication/

synchronization, we extend memory access semantics using

address translation to identify explicitly managed

(scratchpad) address regions, and cache line state bits to

indicate different access semantics at finer granularity.

Local and remote scratchpad regions are identified by

their physical address provided via address translation. The

address translation mechanism is augmented with a few

extra bits that explicitly determine whether an address

region contains cacheable or directly-addressed (scratchpad)

data, as shown in Figure 2. This is important when remote

scratchpad regions are addressed, so that the hardware

accesses them remotely, rather than locally caching them. It

also obviates tag bit comparison to verify that a memory

access actually hits into a scratchpad line; hence, tag bits of

scratchpad areas can be used for other purposes, such as

implementing communication semantics for RDMA

commands, counters, and queues. Regions marked as

scratchpad occupy a set of blocks in the data portion of the

memory "way" block. Each of the blocks in the region is

marked as non-evictable in its state bits. This marking

allows the distinction of memory access semantics at cache

block granularity, and is used to ignore the actual tag-

matching of the hit logic. This mechanism allows for

runtime-configurable partitioning of the on-chip SRAM

blocks between cache and scratchpad use, thus adapting to

the needs of the application that is being run at each point in

time.

Multiple, virtualized communication control/status

registers are implemented in scratchpad region lines. Other

than plain scratchpad memory, lines in these regions

can be marked, in their state bits, as having three types of

such special semantics:

• communication: (RDMA or message) command/status;

• counters: used for synchronization and notification

through atomic increment operations;

• queues: used to atomically multiplex or dispatch

information from/to multiple concurrently executing

tasks.

The virtualized nature of these three types of event

sensitive lines (ESLs) results as follows: ESLs can be freely

 Figure 2. Cache line Types Figure 3. Event responses to RDMAs, Counters, and Queues

! IEEE 2010 - Appears in IEEE Conference on Cluster Computing, September 2010, Heraklion, Crete, Greece 3

allocated in the (virtual) address space of any process. Each

process can freely access locally allocated ESLs, in user-

mode, independent of, and asynchronously to other

processes. Virtualization also requires that address

arguments passed to ESLs are given in virtual -rather than

physical- space, and are protection-checked by hardware.

Software can issue a remote DMA operation using 4 store

instructions into a command buffer: (i) opcode and size; (ii)

source (iii) destination, and (iv) acknowledgment addresses.

Store instructions to scratchpad regions, identified by the

processor TLB, should be processed in a pipelined fashion.

B. EventResponses

Event responses are hardware synchronization primitives,

configurable by software and are provided by counter and

queue event sensitive lines (ESLs). On every access,

hardware checks the state and tag bits of the addressed line.

When that is an ESL and a relevant condition is met,

communication response is triggered, according to previous

software configuration written in the ESL data block as

shown in Fig. 3.

Counters are intended to provide software notification

regarding the completion of an unordered sequence of

operations, e.g. multiple transfer reception, or arrivals at a

barrier. Counters perform atomic add-on-store. Software can

write configuration information, and up to four notification

addresses (which may correspond to other ESL's), in their

data block. When the counter reaches zero, a pre-configured

word is sent to the notification addresses.

Multiple-reader queues (mr-Q) accept asynchronous

write (enqueue) and read (dequeue) accesses from any

number of processors. Read requests arriving at an empty

mr-Q are recorded, waiting until corresponding writes

arrive, thus effectively matching read and write requests in

time. When a write is matched with a read in the mr-Q, a

response packet is triggered, with the data of the write sent

to the response address of the read. Reads and writes to the

mr-Q are buffered in scratchpad memory contiguous to the

ESL, forming the queue body.

A lock can be implemented with an mr-Q, initialized to

contain a single token-word (or a semaphore by initializing

with multiple tokens); to acquire the lock, a task reads from

the queue and waits for the response packet; to release the

lock, the task writes the token back into the queue. Job

dispatching can be implemented by writing task descriptors

into an mr-Q; whenever processors becomes ready to run a

new task, they read (dequeue) an ID from this queue.

III. SCLALABLE LEVEL-2 SWITCH

Four processors are connected using a on-chip level-1

switch forming a cluster. The clusters are connected using a

level-2 switch fabric. The main challenge in designing a

switch fabric is the switch arbitration, performed by a

matching algorithm. Many matching algorithms have been

proposed and investigated [4] - [11]. Among the matching

algorithms, some of them are too complex to use in practice,

such as the maximum weight matching (MWM). Some

other algorithms, such as iSLIP [9], have lower complexity

and are practical for hardware implementation. However,

their performance is not as good as MWM when traffic

pattern is bursty or non-uniform, especially at high loads.

For this system, an efficient matching algorithm, called

special sequential iterative matching (SIM), is proposed for

Combined Input Output Queue (CIOQ) switches. In order to

make fast matching decision between the Input and Output

Queues, several iterative matching algorithms have been

proposed for CIOQ switches, such as PIM [6], iSLIP [9] and

dual round robin arbitration scheme (DRR) [7]. In this

system we designed a more efficient matching algorithm

combining the efficiency of PIM2 and the performance of

DRR, called special sequential iterative matching (SIM).

The proposed scheme supports the following features:

• Pipelined Iteration

SIM works in a sequential mode; therefore it can be

efficiently pipelined. In this case, the IQ can quickly scan,

find and lock a matching pair between IQ and OQ. The

iteration period is two clock cycles (one for request, another

one for grant), thus a 2-stage pipelined request scheme can

be achieved, which means that IQ can issue a request

destined to the different OQ per clock.

• Matching Arbitration under GSI

In order to increase the probability of matching success, a

set of registers are used in SIM. These registers are used to

record all General State Information (GSI), e.g., IQs, OQs,

request arbiter, grant arbiter, and so on. Subsequently, the

gathered GSI is fed back to IQ request arbiters, OQ grant

arbiters, and matching transfer controllers to supply

necessary references for their arbitration and decision. The

IQs that have at least a packet to send and the OQs that have

enough space to receive a packet are forming the eligible

queues group. The arbiter randomly selects a ready IQ

number, whose destined OQ number should be also in this

group too, to issue its request.

• Exhaustive Transmission

Furthermore, the SIM supports exhaustive matching; an

IQ is served continuously until the IQ becomes empty or the

corresponding OQ becomes full. This scheme can provide

high throughput both in uniform and non-uniform traffic.

The exhaustive transmission also benefits from GSI. GSI

helps the transmitting controller to determine the number of

packets to move from an IQ to their destined OQ, by

obtaining the number of packets in an IQ and the free space

of the corresponding OQ. Using exhaustive matching more

packets will be transferred in burst mode per matching so as

to avoid the frequent matching operation.

IV. PERFORMANCE EVALUATION

To evaluate the proposed scheme we set up a system that

consist of 4 multi-core clusters and the level-2 switch. Each

! IEEE 2010 - Appears in IEEE Conference on Cluster Computing, September 2010, Heraklion, Crete, Greece 4

cluster consists of a Xilinx ML505 board (Fig. 1) with an

FPGA that incorporates 4 MicroBlaze processors supporting

the explicit communication and synchronization described

in Section 2. Each cluster is connected to the level-2 switch

using 2 SATA interfaces configured at 3.125Gbps (thus

providing 6.25Gbps per port). The level-2 switch is

configured as a 4x4 store-and-forward switch with 2 planes

(each port is 2 SATA interface; one for each plane) for a

total aggregated throughput of 25 Gbps.

To evaluate the scalability of the proposed scheme we

used the following benchmark. We measured the time to

distribute evenly 64MB of data when the number of

processors scales from 2 to 16 (i.e when the number of

processors is 4, each processor sends 16MB to all the other

processors, etc). Figure 4 shows the total execution time to

distribute 64MB of data (compared with the execution using

only two cores). As it is shown in the figure, the system

scales efficiently as the number of cores increase from 2 to

16 (from 1 cluster to 4 clusters).

Figure 5 shows the latency for a data transfer between

two clusters in clock cycles (at 75MHz). The latency

between the processor and the SATA transceiver is around

15cc. The latency from the input to the output port of the

level-2 switch is around 120 cc. This latency is due to the

fact that the level-2 switch is configured as store-and-

forward in order to increase the reliability of the switch (if a

packet is lost, the switch can retransmit it). The rest of

cycles (~65cc) are from the NI of the receiving cluster to the

memory of the processor.

V. CONCLUSIONS

In this paper we have described and evaluated a multi-

processor scalable cluster system with an efficient level-2

CIOQ switch that can scale efficiently up to 80 processors

with up to 62.5Gbps aggregated bandwidth. The processors

support both implicit and explicit communication and

synchronization. The explicit communication can achieve

high performance while the implicit communication

increases the programming efficiency. Furthermore, the

merged cache with the network interface (NI) and the

hardware primitives for synchronization (RDMA, counters,

queues) provide reduced interprocess communication and

high bandwidth. The proposed system has been evaluated

with 16 processors proving high bandwidth (25Gbps) and

reduced interprocess communication latency between the

clusters (200cc for 32 bytes).

ACKNOWLEDGMENT

This work is supported by the HiPEAC NoE and the
SARC IP European union projects.

REFERENCES

[1] Giorgos Passas, Manolis Katevenis, Dionisis Pnevmatikatos, “A

128x128x24Gb/s Crossbar, interconnecting 128 tiles in a single hop,
and occupying less than 6% of their area,” The 4th ACM/IEEE

International Symposium on Network-on-Chip (NOCS 2010), 2010.

[2] George Kalokerinos, et al, “FPGA implementation of a configurable
cache/scratchpad memory with virtualized user-level RDMA

capability,” The 2009 IEEE International conference on embedded
Computer Systems: Architecture, Modeling, and Simulation, July,

2009.

[3] Kavadias, S.,Katevenis, M., Zampetakis M., Nikolopoulos, D.,”On-
Chip Communication and Synchronization Mechanisms with Cache-

Integrated Network Interfaces”, Proc. of IEEE International
Conference on Computing Frontiers, May 2010

[4] Yoohwan Kim, H. Jonathan Chao, “Performance of exhaustive
matching alogorithms for input-queued switches,” Conference on

Communication (ICC 2003), vol. 3, pp. 1817-1822, 2003.

[5] Y. Li, S. Panwar, H. J. Chao, “The dual round-robin matching with
exhaustive Service,” Proceedings of IEEE Workshop on High

Performance Switching and Routing (HPSR 2002), May 2002.

[6] Deng Pan, Yuanyuan Yang, “Pipelined two step iterative matching
algorithms for CIOQ crossbar switches,” ANCS 2005, pp. 41-50,

October 2005.

[7] Jonathan Chao, “Saturn: a terabit packet switch using dual round-
robin,” IEEE Communication, pp. 78-84, December, 2000.

[8] Cyriel Johan Agnes Minkenberg, “On packet switch design,” Ph.D.

dissertation, Eindhoven University of Technology, 2001.

[9] Nick McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol.7,no.2,pp.188-201,

1999.

[10] T. E. Anderson, S. S. Owicki, J. B. Saxie, C. P. Thacker, “High speed

switch scheduling for local area networks,” ACM Trans. Computer
Systems, vol. 11, no. 4, pp. 319-352, Nov. 1993.

[11] Devavrat Shah, “Maximal matching scheduling is good enough,”

IEEE GLOBECOM’ 03, vol. 6, pp. 3009-3013, 2003.

Figure 4. Execution time

Figure 5. Latency vs. transfer size

