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Abstract— One of the main challenges in the multi-core area is 

the communication and synchronization of the cores and the 

design of an efficient interconnection network that is scalable 

to multiple cores. In this paper we present an efficient 

implementation of a scalable system that is targeting multi-

core systems. Each cluster node consists of 4 processors that 

support both explicit and implicit communication. Processor’s 

cache is augmented with scratchpad and is merged with the 

network interface (NI) for reduced communication latency. All 

nodes are connected through a novel layer-2 switch that can 

support up to 20 nodes.  The proposed system is designed and 

implemented using multiple FPGA boards and the 

performance evaluation presents the aggregate throughput of 

the system (with 16 processors) and the communication latency 

between that cluster nodes. 
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I.  INTRODUCTION 

As the number of processing core per chip increases, so 

does the need for efficient and high-speed communication 

and synchronization support, so that applications can exploit 

the available cores. The memory hierarchies of these multi-

core systems are based on one of the two dominant schemes 

-multilevel caches, or directly-addressable local scratchpad 

memories. Caches transparently decide on the placement of 

data, and use coherence to support communication, which is 

especially helpful in the case of implicit communication, i.e. 

when we do not know in advance which input data will be 

needed, or who last modified them. However, caches lack 

deterministic response time, and make it harder to the 

software to explicitly control and optimize data locality and 

transfers in the cases when it can intelligently do so. 

Furthermore, coherent caches scales poorly.  

On the other hand, scratchpads offer predictable 

performance which is required in real-time applications. 

They also offer scalable general purpose performance by 

allowing explicit control and optimization of data placement 

and transfers. In the case of scratchpad, the interprocess 

communication is explicit meaning that the software (the 

application, or compiler, or runtime system) is able to 

indicate physical placement or transfers. The explicit 

communication is mainly based on remote direct memory 

accesses (RDMA) that is efficient and it becomes possibly 

in cases when the producer knows who the consumer will be. 

The main drawback of the scratchpad is that it reduces the 

programming efficiency, since extra effort must given to the 

synchronization and the consistency of the system. 

Furthermore, the main challenges in these multi-

processor systems is the design of an efficient inter-

connection scheme that achieves high throughput and low 

latency communication. In the domain of Chip-Multi-

Processors (CMP) several schemes have been proposed for 

the interconnection of the tiles such as mesh, concentrated 

mesh, torus, etc. These interconnection schemes provide 

high throughput but introduce significant latency. On the 

other hand, interconnections based on crossbars can achieve 

high throughput while also introducing lower latency [1]. 

The proposed interconnection scheme is targeting a multi-

processor FPGA-based system that spans over several 

boards [2] [3]. It consists of multiple processing nodes (each 

consisting of 4 processors connected using a level-1 switch) 

and a level-2 off-chip interconnection network as shown in 

Figure 1. 

Fig. 1.  Prototype block diagram 

In this paper we focus on an efficient FPGA 

implementation of a scalable hierarchical system that 

consists of an efficient level-2 off-chip switch and each 

node consists of 4 processors that support both explicit and 

implicit communication and synchronization. The proposed 

system can support up to 20 nodes (80 processors) and the 

total aggregate throughput in the level-2 switch is 62.5Gbps.  

The main features of the proposed system are: 

! Each cluster consists of 4 processors with explicit 

communication and synchronization 

! Each processor’s cache is merged with the scratchpad 

and the NI 
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! Switch size: up to 20x20 or 6x6(with 3planes) clusters 

! Line speed rate: 3.125 Gbps 

! Supports variable-size packet from 8 to 70 bytes. 

! Flow control: 14 packet-based credits 

! High performance: high sustainable throughput under 

a wide range of traffic models and low latency 

! QoS support: fault-tolerant, traffic priority support 

! Priority service: 3-level priority 

The paper is organized as follows. Section II describes 

the explicit communication and synchronization of the 

processors across the scalable platform. Section III presents 

the level-2 switch, used to connect the clusters, which is 

based on a novel sequential iterative matching algorithm. 

Section IV presents the performance evaluation of the 

system using up to 4 clusters (16 cores). Finally, Section V 

concludes the paper. 

II. EXPLICIT COMMUNICATION AND SYNCHRONIZATION 

This section describes the architecture of our local 

memory, which can be dynamically configured as partly-

cache and partly-scratchpad, and also describes the software 

interface to the hardware mechanisms for explicit 

communication and synchronization. These are all based on 

common hardware actions, thus unifying the cache 

controller and the network interface: for each access, check 

the state and tag bits of the addressed line, and act 

accordingly.  

We generalize the traditional approach where the 

processor uses I/O control and status registers to initiate 

operations and poll for status or wait for notifications. In 

order to increase parallelism, multiple pending operations 

are supported, by means of multiple control and status 

registers. To reduce overhead, these multiple registers are 

virtualized, so as to be accessible in user-mode. We bring 

these mechanisms close to the processor, into caches, to 

reduce latency. To allow parallel access, we target private -

as opposed to shared- caches, and integrate our NI 

mechanisms into second-level (L2)-as opposed to L1- 

caches, in order to provide sufficient scratchpad space for 

application data without affecting the processor clock 

(however the ideas are general and independent of that 

choice). 

A. Memory Access Semantics: Cache, Scratchpad, NI 

To integrate cache, scratchpad, and communication/ 

synchronization, we extend memory access semantics using 

address translation to identify explicitly managed 

(scratchpad) address regions, and cache line state bits to 

indicate different access semantics at finer granularity.  

Local and remote scratchpad regions are identified by 

their physical address provided via address translation. The 

address translation mechanism is augmented with a few 

extra bits that explicitly determine whether an address 

region contains cacheable or directly-addressed (scratchpad) 

data, as shown in Figure 2. This is important when remote 

scratchpad regions are addressed, so that the hardware 

accesses them remotely, rather than locally caching them. It 

also obviates tag bit comparison to verify that a memory 

access actually hits into a scratchpad line; hence, tag bits of 

scratchpad areas can be used for other purposes, such as 

implementing communication semantics for RDMA 

commands, counters, and queues. Regions marked as 

scratchpad occupy a set of blocks in the data portion of the 

memory "way" block. Each of the blocks in the region is 

marked as non-evictable in its state bits. This marking 

allows the distinction of memory access semantics at cache 

block granularity, and is used to ignore the actual tag-

matching of the hit logic. This mechanism allows for 

runtime-configurable partitioning of the on-chip SRAM 

blocks between cache and scratchpad use, thus adapting to 

the needs of the application that is being run at each point in 

time. 

Multiple, virtualized communication control/status 

registers are implemented in scratchpad region lines. Other 

than plain scratchpad memory, lines in these regions 

can be marked, in their state bits, as having three types of 

such special semantics: 

• communication:  (RDMA or message) command/status; 

• counters: used for synchronization and notification 

through atomic increment operations;  

• queues: used to atomically multiplex or dispatch 

information from/to multiple concurrently executing 

tasks. 

The virtualized nature of these three types of event 

sensitive lines (ESLs) results as follows: ESLs can be freely 

            
          Figure 2. Cache line Types    Figure 3. Event responses to RDMAs, Counters, and Queues 
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allocated in the (virtual) address space of any process. Each 

process can freely access locally allocated ESLs, in user-

mode, independent of, and asynchronously to other 

processes. Virtualization also requires that address 

arguments passed to ESLs are given in virtual -rather than 

physical- space, and are protection-checked by hardware. 

Software can issue a remote DMA operation using 4 store 

instructions into a command buffer: (i) opcode and size; (ii) 

source (iii) destination, and (iv) acknowledgment addresses. 

Store instructions to scratchpad regions, identified by the 

processor TLB, should be processed in a pipelined fashion. 

B. EventResponses 

Event responses are hardware synchronization primitives, 

configurable by software and are provided by counter and 

queue event sensitive lines (ESLs). On every access, 

hardware checks the state and tag bits of the addressed line. 

When that is an ESL and a relevant condition is met, 

communication response is triggered, according to previous 

software configuration written in the ESL data block as 

shown in Fig. 3. 

Counters are intended to provide software notification 

regarding the completion of an unordered sequence of 

operations, e.g. multiple transfer reception, or arrivals at a 

barrier. Counters perform atomic add-on-store. Software can 

write configuration information, and up to four notification 

addresses (which may correspond to other ESL's), in their 

data block. When the counter reaches zero, a pre-configured 

word is sent to the notification addresses.  

Multiple-reader queues (mr-Q) accept asynchronous 

write (enqueue) and read (dequeue) accesses from any 

number of processors. Read requests arriving at an empty 

mr-Q are recorded, waiting until corresponding writes 

arrive, thus effectively matching read and write requests in 

time. When a write is matched with a read in the mr-Q, a 

response packet is triggered, with the data of the write sent 

to the response address of the read. Reads and writes to the 

mr-Q are buffered in scratchpad memory contiguous to the 

ESL, forming the queue body.  

A lock can be implemented with an mr-Q, initialized to 

contain a single token-word (or a semaphore by initializing 

with multiple tokens); to acquire the lock, a task reads from 

the queue and waits for the response packet; to release the 

lock, the task writes the token back into the queue. Job 

dispatching can be implemented by writing task descriptors 

into an mr-Q; whenever processors becomes ready to run a 

new task, they read (dequeue) an ID from this queue. 

III. SCLALABLE LEVEL-2 SWITCH 

Four processors are connected using a on-chip level-1 

switch forming a cluster. The clusters are connected using a 

level-2 switch fabric. The main challenge in designing a 

switch fabric is the switch arbitration, performed by a 

matching algorithm. Many matching algorithms have been 

proposed and investigated [4] - [11]. Among the matching 

algorithms, some of them are too complex to use in practice, 

such as the maximum weight matching (MWM). Some 

other algorithms, such as iSLIP [9], have lower complexity 

and are practical for hardware implementation. However, 

their performance is not as good as MWM when traffic 

pattern is bursty or non-uniform, especially at high loads.  

For this system, an efficient matching algorithm, called 

special sequential iterative matching (SIM), is proposed for 

Combined Input Output Queue (CIOQ) switches. In order to 

make fast matching decision between the Input and Output 

Queues, several iterative matching algorithms have been 

proposed for CIOQ switches, such as PIM [6], iSLIP [9] and 

dual round robin arbitration scheme (DRR) [7]. In this 

system we designed a more efficient matching algorithm 

combining the efficiency of PIM2 and the performance of 

DRR, called special sequential iterative matching (SIM). 

The proposed scheme supports the following features: 

• Pipelined Iteration 

SIM works in a sequential mode; therefore it can be 

efficiently pipelined. In this case, the IQ can quickly scan, 

find and lock a matching pair between IQ and OQ. The 

iteration period is two clock cycles (one for request, another 

one for grant), thus a 2-stage pipelined request scheme can 

be achieved, which means that IQ can issue a request 

destined to the different OQ per clock.  

• Matching Arbitration under GSI 

In order to increase the probability of matching success, a 

set of registers are used in SIM. These registers are used to 

record all General State Information (GSI), e.g., IQs, OQs, 

request arbiter, grant arbiter, and so on. Subsequently, the 

gathered GSI is fed back to IQ request arbiters, OQ grant 

arbiters, and matching transfer controllers to supply 

necessary references for their arbitration and decision. The 

IQs that have at least a packet to send and the OQs that have 

enough space to receive a packet are forming the eligible 

queues group. The arbiter randomly selects a ready IQ 

number, whose destined OQ number should be also in this 

group too, to issue its request.  

• Exhaustive Transmission 

Furthermore, the SIM supports exhaustive matching; an 

IQ is served continuously until the IQ becomes empty or the 

corresponding OQ becomes full. This scheme can provide 

high throughput both in uniform and non-uniform traffic. 

The exhaustive transmission also benefits from GSI. GSI 

helps the transmitting controller to determine the number of 

packets to move from an IQ to their destined OQ, by 

obtaining the number of packets in an IQ and the free space 

of the corresponding OQ. Using exhaustive matching more 

packets will be transferred in burst mode per matching so as 

to avoid the frequent matching operation.    

IV. PERFORMANCE EVALUATION 

To evaluate the proposed scheme we set up a system that 

consist of 4 multi-core clusters and the level-2 switch. Each 
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cluster consists of a Xilinx ML505 board (Fig. 1) with an 

FPGA that incorporates 4 MicroBlaze processors supporting 

the explicit communication and synchronization described 

in Section 2. Each cluster is connected to the level-2 switch 

using 2 SATA interfaces configured at 3.125Gbps (thus 

providing 6.25Gbps per port). The level-2 switch is 

configured as a 4x4 store-and-forward switch with 2 planes 

(each port is 2 SATA interface; one for each plane) for a 

total aggregated throughput of 25 Gbps.  

To evaluate the scalability of the proposed scheme we 

used the following benchmark. We measured the time to 

distribute evenly 64MB of data when the number of 

processors scales from 2 to 16 (i.e when the number of 

processors is 4, each processor sends 16MB to all the other 

processors, etc).  Figure 4 shows the total execution time to 

distribute 64MB of data (compared with the execution using 

only two cores). As it is shown in the figure, the system 

scales efficiently as the number of cores increase from 2 to 

16 (from 1 cluster to 4 clusters).   

Figure 5 shows the latency for a data transfer between 

two clusters in clock cycles (at 75MHz). The latency 

between the processor and the SATA transceiver is around 

15cc. The latency from the input to the output port of the 

level-2 switch is around 120 cc. This latency is due to the 

fact that the level-2 switch is configured as store-and-

forward in order to increase the reliability of the switch (if a 

packet is lost, the switch can retransmit it). The rest of 

cycles (~65cc) are from the NI of the receiving cluster to the 

memory of the processor.  

V. CONCLUSIONS 

In this paper we have described and evaluated a multi-

processor scalable cluster system with an efficient level-2 

CIOQ switch that can scale efficiently up to 80 processors 

with up to 62.5Gbps aggregated bandwidth. The processors 

support both implicit and explicit communication and 

synchronization. The explicit communication can achieve 

high performance while the implicit communication 

increases the programming efficiency. Furthermore, the 

merged cache with the network interface (NI) and the 

hardware primitives for synchronization (RDMA, counters, 

queues) provide reduced interprocess communication and 

high bandwidth.  The proposed system has been evaluated 

with 16 processors proving high bandwidth (25Gbps) and 

reduced interprocess communication latency between the 

clusters (200cc for 32 bytes).  
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Figure 4. Execution time  

 

 
Figure 5. Latency vs. transfer size 


