
Experiences from Debugging a PCIX-based RDMA-capable NIC

Manolis Marazakis, Vassilis Papaefstathiou, Giorgos Kalokairinos, and Angelos Bilas
Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH),

Heraklion, Greece GR71110
{maraz,papaef,george,bilas}@ics.forth.gr

Abstract

Implementing and debugging high-performance newtork
subsystems is a challenging task. In this paper, we present
our experiences from developing and debugging a net-
work interface card (NIC). Our NIC targets networked stor-
age subsystems [17]. For this purpose it mainly provides
support for remote direct-memory-access (RDMA) write,
sender-side notification of RDMA write completion, and
receiver-side interrupt generation. In our work we examine
issues that arise during system implementation and debug-
ging, both in terms of correctness as well as performance.
We present an analysis of the individual problems we en-
counter and we discuss how we address each case. For
most problems we encounter, it is not possible to rely on
existing debugging tools. However, we find that most of the
techniques we use in this process, rely on collecting some
form of event records from software or hardware compo-
nents. We believe that such capabilities can be provided for
independent hardware or software components in isolation,
a fairly straight-forward task, thus, significantly simplifying
the debugging process in complex systems of this nature.

1. Introduction

Implementation and debugging of high-performance
systems consisting of multiple hardware and software com-
ponents presents a significant challenge both in terms of
correctness as well as performance. Especially, when both
new hardware and low-level software components are in-
volved, debugging becomes time-consuming as most tools
currently available cannot be used.

In this paper, we present our experience from implement-
ing and debugging such a system [17]. We focus on a net-
work interface card (NIC) that targets networked storage
systems. Future storage systems will increasingly rely on
a scalable interconnect, such as Infiniband [1], Myrinet [7],
and PCI-Express/AS [21, 18]. Such interconnects are used
extensivelly today in compute clusters. However, storage

systems present new challenges due to both the different
communication requirements they impose, as well as the
kernel-level protocols they need.

We focus on issues related to the implementation and de-
bugging of the network interface card (NIC). Our NIC of-
fers the following core capabilities: RDMA write, sender-
side notification of RDMA write completion, and receiver-
side interrupt generation. Our goal is to (1) summarize the
problems we encounter during implementation, (2) describe
the methodology we use to address each problem, and (3)
suggest debugging mechanisms that should be developed
during implementation of various system components.

We divide that problems we encounter in correctness and
performance categories:

• Correctness: basic operation of the major NIC mod-
ules, interfaces between modules, interactions with the
host environment.

• Performance: efficient operation of the major NIC
modules, interference between modules, hardware-
software interface.

The custom mechanisms we use to address the problems
are mostly event counters, cycle counters, tracing memo-
ries, and various supporting software modules, both kernel-
space and user-space. We find that these mechanisms con-
stitute some form of event recording. For instance, we cap-
ture data words enqueued for transmission via the network
links, to verify the interface between the DMA engine that
pulls these words form the host memory and the NIC mod-
ule that controls the network transceivers. Moreover, we ob-
serve that these mechanisms refer to individual system com-
ponents; thus, their implementation is independent of other
system components and may occur a-priori during compo-
nent implementation. Therefore, we believe that providing
the ability to gather certain known event records by each
system component is a generic mechanism that can reduce
debugging effort.

The rest of this paper is organized as follows. Section 2
outlines the design of the NIC and discusses the debugging

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 1

....

....

Tail

Head

Pages

I/O commands/completions

RDMA completion notifications

PCI−X

net2host FIFO

host2net FIFO

[NIC]

[Host Memory]

to host)(DMA
send−completedRDMA descriptors

(direct PIO)

Rocket I/O serial−link
transceivers

RDMA request queueoutbound
data

(DMA
from host)

(DMA
to host)

inbound
data

Figure 1. NIC block-level organization and
main structures.

methodology and tools we use. Sections 3 and 4 present the
main correctness and performance problems that occurred
during implementation and how we address each of them.
Section 5 presents related work. Finally, Section 6 con-
cludes the paper.

2. Background about the NIC

We are developing a low-latency, high-throughput NIC
that allows us to perform memory-to-memory transfers
from initiators to targets, in a SAN environment. The NIC
has been developed in-house to allow both detailed mea-
surements of all aspects of communication in the I/O path
as well as customization of communication primitives and
operations. In the following, we present an overview of the
design, and highlight testing and debugging challenges that
we have to overcome. The NIC is implemented with a Din-
iGroup DK6000K10SC development board, using a Xilinx
VirtexII Pro FPGA. A detailed presentation of the design is
given in [13].

Figure 1 shows the block-level organization of the NIC.
The NIC design initially targeted 64-bit, 66 MHz PCI. The
design evolved to 64-bit, 100 MHz PCI-X [20].

The host-NIC DMA engine transfers 64-bit data words
in bulk to and from the host’s memory. A transceiver
controller co-ordinates transmission and reception of data
words over a pair of serial links. The NIC applies a credit-
based scheme for network flow control [15], to prevent
overflowing the receiver’s NIC buffer, thus preventing loss
of data in the event of heavy network load. The NIC
maintains a pair of inbound and outbound word counters

per flow. The receiving-side NIC transmits the count of
words received, in a special control message (credit). The
transmitting-side NIC has to examine the credit, in compar-
ison with its own count of words transmitted, and determine
if there is enough space at the receiving side to accept a new
packet.

2.1. Network Links

At the physical layer, our NIC uses a pair of RocketI/O
(RIO) serial links [3]. The serial links, each capable of 2.5
GBits/s (3.125 GBauds) full-duplex, operate at 78.125 MHz
and are controlled by an FPGA-based transceiver controller.
An extension of this design allows for 4 serial links, result-
ing in 10 GBits/s total link throughput.

The communication with each RIO transceiver is done
through a 32-bit wide data-path. At the transmitter side,
data is sent to the network 4 bytes per clock cycle per RIO
link. Some synchronization/delimiting bytes are introduced
occasionally at packet boundaries or at idle periods. The
data is serialized and transmitted through differential links
(one pair per RIO link). At the receiving side however, the
situation is somewhat more complicated. Data deserializa-
tion can cause misalignment of the bytes, i.e. the bytes that
make up a transmitted 32-bit word may be found shifted in
the received word. RIO attribute settings may assist in mak-
ing this problem infrequent, but it can only be overcome
by using a separate circuit for each link. This circuit is a
pipeline that takes as input the misaligned incoming stream,
extracts serialization/synchronization information from the
link, and delivers the packet in its original from.

Beyond intra-link synchronization, inter-link synchro-
nization is required. The two RIO links arebondedby
the NIC to appear as a single network link, as is the case
in all high-end network interfaces today that use multiple
physical links. Each packet is transferred over both links,
multiplexing data at the byte level. Every receiving circuit
incorporates a small synchronization FIFO. This is used to
form 64-bit words, by combining 32-bit words from each
of the links. This is necessary as the two 32-bit words are
not available always at the same clock cycle from the RIO
to the receiver.

Another important design issue is the difference of the
link speeds at each side of the network. Each NIC has its
own crystal driving the RIO transceivers, which although of
the same nominal frequency, always have a slight drift. To
counter this difference, we have activated a clock correc-
tion mechanism which allows the injection and removal of
idle/sync characters in the stream.

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 2

2.2. RDMA Initiation

Host programs access the RDMA request queue, as well
as a set of performance-related counters via a memory map-
ping established with the cooperation of the NIC kernel
module through themmap() system call. Our current de-
sign does not supportprotected, user-space access to NIC
resources and is intended for use by the kernel. The main
reason for this is that we are interested in exploring issues
related to the I/O protocol stack, which because of trans-
parency requirements in practice always involves the op-
erating system kernel. However, user-space programs can
still access the NIC in an unprotected manner for testing
and benchmarking.

Currently, the NIC supports onlyRDMA write opera-
tions. Each remote write is specified through a transfer
handle. The transfer handle specifies the local and remote
physical addresses, the length of the transfer, and the de-
sired notifications. Completion of a transfer may generate
(a) a local notification in the form of a 64-bit word written
by the NIC into the sender’s memory and (b) an interrupt
at the receiver host. Currently, the maximum message size
is 4 KBytes; longer messages have to be segmented in the
host library. On the receive path, data is directly transferred
to the specified physical locations in memory,without any
receiver processor intervention.

Posting a RDMA write operation requires posting the
transfer descriptor to the NIC request queue, over the PCI-X
target interface. In the current version of the NIC, posting
a transfer descriptor requires four 32-bit PCI-X write oper-
ations in the NIC’s DMA queue: Two 32-bit words to spec-
ify the source physical address, one 32-bit word to specify
the destination address, and finally a 32-bit word to spec-
ify the transfer size (as a number of 64-bit words), various
transfer flags, such as local and remote notification options,
and the destination node, identified by a 7-bitflow ID. The
NIC’s design is oriented for mostly kernel-space use and
allows for 64-bit addresses. As a provision for allowing
some level of protection, the NIC can treat the 32-bit desti-
nation address word as a handle to be resolved based on pre-
established bindings for remote memory regions. However,
in the current version of the NIC this feature is not avail-
able; therefore, the destination word is treated as a physical
address in the receiver’s memory.

The DMA engine and the network transceivers operate
within different clock domains. A pair of FIFO queues al-
lows us to handle this mismatch: The DMA engine places
the entire message to be transmitted in the outgoing FIFO
and then signals the transceiver module to commence trans-
mission. Regardless of clock speeds, the process of reading
words from the host’s memory is subject to delays that can-
not be anticipated or controlled by the NIC. Having the en-
tire message ready for transmission simplifies the operation

of the transceiver module. During message reception, the
transceiver module signals the DMA engine to start trans-
ferring data to the host’s memory as soon as the header and
a few data words have been placed in the incoming FIFO.
Receiver-side cut-through offers a performance benefit, as
it frees FIFO space in the receiver as fast as possible. More-
over, it allows the sender to proceed with its next RDMA
transfer before the receiver has finished placing the data in
host memory.

2.3. Crossbar Switch

To support multiple I/O initiators and targets, our proto-
type uses an in-house network switch. The switch is based
on a buffered crossbar that involves small buffers in the
crosspoints and allows cut-through operation. The crossbar
applies distributed round-robin scheduling to its outputs.
Since we expect to have hotspots in the network, i.e some
outputs will be more congested than others, we rely on a
credit-based back-pressure mechanism to prevent overflow-
ing both the crossbar buffers and the receiver’s incoming
network buffers. The buffered crossbar operates directly on
variable size packets; therefore, there is no need for segmen-
tation and reassembly [14]. We have an 8x8 buffered cross-
bar switch, where each NIC is connected with one bidirec-
tional RIO link with the switch. The NICs can then send
packets to any of the destination in our system-area network
by modifying the appropriate destination flow-ID field in
the packet header.

2.4. Experimental Testbed

The main prototype we use in testing the NIC consists
of two Dell PowerEdge 1600SC servers, each with a sin-
gle Intel Xeon CPU, running at 2.4 GHz, 512 MBytes of
main memory, and one 64-bit PCI-X bus running at 100
MHz. One of the nodes serves as I/O target, with 8 directly-
attached SATA disks. The disks we use are Western Digital
WD800JD, connected to a BroadCom RAIDcore controller,
with a total capacity of 614.1 GBytes. Each node has an ad-
ditional dedicated IDE system disk, and two interconnects:
(a) a Gigabit Ethernet adapter for system administration and
monitoring and (b) our custom-built NIC for RDMA trans-
fers. For experiments using the switch, we can currently use
from 2 up to 6 servers as end-points interconnected through
the switch.

2.5. Hardware-Software Interface

Our NIC is used as part of a networked storage system
prototype. Details of the remote I/O protocol, as well as
a performance evaluation, are presented in [17]. We have
implemented the systems software in Linux kernel version

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 3

data, status

Remote Queues

Buffer regions

RDMA

I/O Target

/dev/sda, /dev/sdb, ...

/dev/ibda, /dev/ibdb, ...

block devices

virtual block devices

read(), write(), ioctl(), ...

Remote Queues

Buffer regions

RDMA

I/O Initiator

RocketI/O
Links

NICNIC

tests/benchmarks
 applications

user−space

Figure 2. Overview of software architecture
for remote block I/O prototype.

2.4.30. We divide the remote I/O path framework into two
major parts, corresponding to the two sides in an I/O oper-
ation, initiator and target. Our protocol is implemented asa
block-level driver module for the initiator and target. To use
RDMA operations the initiator and the target each maintain
a queue and a pool of data buffers. The queue at the tar-
get stores I/O commands, produced by the initiator. The
queue at the initiator stores completion notifications, for-
warded by the target upon completing commands that it has
dequeued from its queue. The overall architecture of our
I/O protocol stack is illustrated in Figure 2 [17]. The ini-
tiator and target modules that implement the remote access
protocol initially establish their association over a TCP/IP
socket. Then, the target informs the initiator of the actual
device parameters: device size, block size, sector size, and
read-ahead limits. Finally, the initiator registers the remote
device with the local OS kernel. All applications at the ini-
tiator can then access the target’s exported block device, as
if it were a directly-attached disk. This guaranteestranspar-
entaccess to the storage available at the target. For example,
we construct file systems on top of remote block devices.

2.6. Performance Evaluation

Figure 3 shows maximum achievable throughput for
two simple user-space benchmarks. Thewrite-combining
curves correspond to a version of the NIC that supports
write combining. This results in faster posting of trans-
fer descriptors into the RDMA request queue. One of the
benchmarks initiates one-way transfers without waiting for
a response from the receiver, whereas the second produces
a two-way, ping-pong traffic pattern. In all cases, all mes-
sages sent are of the same size. When message size exceeds
4 KBytes, the host library breaks the message to 4-KByte

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512K1024K

request size (bytes)

100

200

300

400

500

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

1-way
1-way, write-combining
2-way, write-combining
2-way

Figure 3. Base communication performance,
for two versions of the NIC.

segments.
The maximum throughput of the host-NIC DMA engine

is one 64-bit word at every 100-MHz PCI-X clock cycle, i.e.
762.9 MBytes/s (assuming zero bus arbitration and protocol
overheads). The maximum throughput for the pair of RIO
links is one 64-bit word at every 78.125-MHz RIO clock
cycle, i.e. 596 MBytes/s. Therefore, the maximum end-to-
end throughput is limited to that of the network links.

We use hardware cycle counters at the NIC level to ex-
amine the behavior of the host-NIC DMA engine. With
the version of the NIC that does not support PCI-X write-
combining, we measure that on the order of 10 PCI-X cy-
cles are required for each 32-bit CPU-to-NIC write oper-
ation. Initiating a single RDMA write operation requires
about 40 PCI-X cycles or about 400ns. We observe that it
takes on the order of 50 PCI-X cycles (500 ns) for any DMA
operation from the host’s local memory (PCI-X read) to be-
gin transferring data. With write combining, we find that
writing two RDMA descriptors (i.e. 32 bytes) in the NIC
request queue costs about 110 ns, whereas writing a single
RDMA descriptor (i.e. 16 bytes) costs about 90 ns.

Delays for writing the RDMA descriptor and commenc-
ing transfer of data from the host memory dominate the la-
tency for small transfer sizes. After the initial delays, the
DMA engine is capable of reading one 64-bit word per
PCI-X cycle and placing it in the transceiver’s out-bound
FIFO. If there were no further disruptions, this would re-
sult in the maximum transfer rate of 762.9 MBytes/s. For a
DMA transfer of 4 KBytes (i.e. 512 64-bit words) from a
host’s memory, we measure a delay of 577 PCI-X cycles, of
which 512 cycles actually transfer data words (89% utiliza-
tion of PCI-X cycles). Of the remaining 65 cycles, 8 cycles

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 4

0

200

400

600

800

1000

tim
e

(n
s)

recv-rdma
recv-nic
send-nic
send-dma
send-initiation
recv-rdma, write-combining
recv-nic, write-combining
send-nic, write-combining
send-dma, write-combining
send-initiation, write-combining

Figure 4. Breakdown of end-to-end latency for
(a) a single 8-byte message with single (un-
combined) PCI-X writes, and (b) two 8-byte
messages with PCI-X write-combining.

are attributed to bus arbitration and PCI-X protocol phases,
and 57 cycles are consumed until we receive the first data
word. This last time interval is the duration for aPCI-X
split transactionto complete, and we find it is almost con-
stant (regardless of the DMA transfer size) and in the range
45-60 cycles.

Figure 4 shows a breakdown of the one-way latency
for a small, 8-byte message (payload), with and without
write combining. The overhead is divided in the following
components: send-initiation, send-DMA, send-NIC, recv-
NIC, recv-DMA. Thesend-initiationcomponent includes
the PCI-X overhead during posting the transfer descriptor.
The send-DMA, recv-DMAcomponents include all PCI-X
overhead related to the data transfer itself. Finally,send-
NIC and recv-NICis the time spent in the send and re-
ceive NICs. We measured these components using the cor-
responding cycle counters on the NIC boards.

For the NIC version that only supports single PCI-X tar-
get writes, we see that thesend-pathis the most expensive
part for this type of short transfer. Thesend-initiationcom-
ponent accounts for 40% of the overall latency, while the
send-dmacomponent accounts for 51.6%. We find that ap-
proximately 46 PCI-X cycles out of thesend-dmacompo-
nent are related to PCI-X (PCI-Xsplit duration). This initial
delay before transferring any data from the sender host’s
memory is only amortized for larger transfer sizes. With
write combining, thesend-initiationcomponent accounts
for 12% of the overall latency, while thesend-dmacom-
ponent accounts for 58.2%. Latency for a transfer of two
64-bit words is 12.5% lower than the latency for the trans-
fer of a single 64-bit word without write combining.

2.7. Debugging Methodology

Our NIC debugging effort consists of four stages:
First, the debugging of the PCI target interface, including

read/write accesses from the host to the NIC, as well as
DMA transfers from the host’s memory to the NIC. Second,
debugging DMA transfers from the NIC to the host’s mem-
ory. Third, integration of the DMA engine with the net-
work transceiver module, initially in a loop-back arrange-
ment and subsequently in a point-to-point direct connec-
tion setup. Fourth, integration of the NIC with the buffered
crossbar switch. Since the focus of this paper is debugging
the NIC, we provide only a brief description of this stage.
Testing the overall system (hardware plus software) reveals
problems, mostly at the interfaces between modules and in
the hardware-software interface, that cannot be reproduced
in simulations.

Our system consists of multiple interacting hardware and
system components that need to be tested as an integrated
whole. A further complication rises from the fact that the
systems software runs on the host processor, so its inter-
actions with the NIC cannot be simulated with hardware
simulation tools. Moreover, our networked storage system
prototype is interrupt-driven, resulting in inherently asyn-
chronous NIC-host interactions.

A fundamental issue for system-level debugging is that
without a full simulation model that incorporates all system-
level inputs and outputs, designers have to develop atest-
benchthat provides signals replacing the system-level sig-
nals. This can quickly become a tedious, error-prone pro-
cedure. In our work, we rely on theMentor Graphics
ModelSim [19] andCadence NCSim [8] simulation en-
vironments for module-level functional simulation, but ver-
ify overall system functionality mostly by using signal and
data capturing tools and techniques. The next sections de-
scribe in detail the most important correctness and perfor-
mance debugging issues we encounter.

2.8. Debugging Aids

We have designed a tracing memory module to allow
capturing, at each cycle, data words coming in or going out
of the NIC. The tracing memory is 72 bits wide and can hold
up to 2048 samples. We establish four points for capturing
data words, corresponding to the enqueue/dequeue opera-
tions on the two FIFO queues that bind the DMA engine to
the network transceiver module. We preserve tracing mem-
ory contents across host reboots, until they are explicitly
reset. These contents can be recovered by a utility that ac-
cesses them through the target interface. The tracing mem-
ory module exposes an index register that allows the utility
to scan through its entries and retrieve contents.

To inspect the state of the network transceiver module,
we extend the NIC to include an internal bus, which con-
veys debugging and timing information from this module to
the PCI/PCI-X target interface. We use tracing memories
extensively to examine the interactions between the mod-

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 5

ules. Moreover, we add a register accessible through the
target interface that allows us to see the current state in each
of the finite-state machines that control the NIC’s opera-
tion. Status information from the RIO transceivers is also
exposed through the target interface.

3. Correctness Debugging

Table 1 summarizes the correctness issues we encounter
during system implementation and characterizes the tech-
niques we apply in each case for detecting and resolving
them. The following sections discuss each of these issues.

Correctness Issues
Issue Detection
PCI-X configuration space signal capturing
& PCI-X target (logic analyzer)
PCI-X DMA transfers kernel module+
from/to host counters+

signal capturing
RIO transceivers: reliable data signal capturing+
flow from/to host, bonding of tracing+
two links counters
NIC flow control signal capturing
Circuit timing issues timing analysis tools

Table 1. Summary of correctness issues.

3.1. Lack of PCI-X Information

A main challenge in our work has been debugging is-
sues related to PCI/PCI-X. The NIC card is plugged in a
PCI-X slot owned by the south bridge chip, which arbitrates
the PCI-X bus and implements protocol timings. To verify
the correct functional behavior of our peripheral we need a
model for this bridge in order to simulate states of the PCI-X
protocol. Unfortunately, we do not have access to a simu-
lation model from the manufacturer of the bridge. For this
reason, we develop custom test-benches to simulate most
of the bridge behavior according to PCI-X specifications.
Such a procedure is tedious and required months to reach
a satisfactory level of stability for the prototype. More-
over, there are no readily-available test patterns to simulate
the software-induced events and processor intervention in
a test-bench. System-level testing and verification revealed
several errors that are difficult to trace. The functional simu-
lation and verification tools, ModelSim and NCSim, helped
us identify design and protocol errors. However, several
corner cases were not possible to check. The fact that our
test-bench was built based on an incomplete understanding
of the PCI-X bridge hardware, did not allow us to run reli-

able functional and code coverage tests, as supported by the
Cadence NCCov tool and ModelSim’s coverage tool.

3.2. PCI/PCI-X Target interface

The PCI and PCI-X specifications do not directly pro-
vide a clear sequence of steps for building a DMA-capable
peripheral. In our work, we find that design should start
with a minimal device that initially includes only the PCI
configuration space and target functionality. Having a func-
tional PCI target allows access to event counters and tracing
memories built into the NIC.

Debugging the target interface requires the use of alog-
ical analyzerin order to capture the address and data lines,
as well as signals that govern the interaction between the
NIC and the PCI/PCI-X bridge. A main difficulty in this
stage is capturing the signals of interest. As we do not have
a full-scale PCI development and test environment, we use
alternatively a PCI extender card [2]. This PCI extender
card requires the NIC to appear to the PCI bus as a 33 MHz
peripheral. This restriction does not allow for validatingthe
NIC’s timing constraints. However, the setup is sufficient
for capturing and validating the sequencing of critical sig-
nal transitions, such as the assertion of a stop signal during
a DMA transfer from the host’s memory. Moreover, this
approach is far less expensive than a full-scale PCI devel-
opment and test environment.

3.3. DMA Transfers

DMA transfers are initiated by writing descriptors in the
request queue of the NIC. The NIC device driver allows test
programs to access the NIC via read and write accesses to
a specially mapped region of memory. Moreover, this de-
vice driver reserves a number of memory pages that can be
used as the source or destination of DMA transfers between
the NIC and the host. This arrangement allows us to test
the NIC’s DMA capability within a single host, without the
added complexity of the network transceiver module.

We have resolved a number of issues related to DMA
transfers, by making use of event recording mechanisms
embedded in the NIC. Specifically, we use counters for
tracking the number of words transferred in each direction,
as well as tracing memories to capture the actual words
transferred. With early versions of the NIC, we have had
to deal with word omission and duplication errors due to in-
complete handling of PCI/PCI-X bus interactions. We take
advantage of the signal capturing functionality offered by
the Xilinx ChipScope tools package [4] to generate on-chip
“logical analyzers” and watch signal timings via a JTAG
port. ChipScope uses free logic cells in the FPGA and on-
chip memory, to install on-chip “signal taps” to the data-
paths of the circuit selected by the designer. An important

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 6

feature of this tool is support for triggers, in a manner simi-
lar to a real logic analyzer.

Extending the functionality of the PCI-64 NIC to a PCI-
X NIC requires major modifications in the structure of the
DMA engine. Under the PCI-X bus protocol, a DMA read
access usually requires the NIC to start the transaction in
initiator mode and complete it in target mode. This happens
when the PCI-X bridge signals asplit-transactionwhere the
data cannot be pulled immediately by the NIC; Instead, the
bridge pushes them later in time, when they become avail-
able from the host memory. Meanwhile, the NIC can also
be accessed by the systems software running on the host
processor. Similar complications arise in handling the com-
pletion of a transaction. The validation of target interface
becomes by necessity interwined with the validation of the
DMA engine, a factor that increases complexity.

In many occassions, we have encountered unanticipated
behavior, race conditions and corner cases that could not
be modeled in functional simulations. Understanding and
tracing such situations required extensive monitoring with
the debugging tools embedded in the NIC. We mostly re-
lied on using tracing memories to store time-series of events
that were later decoded and inspected off-line to detect the
causes of the unanticipated behaviours. We also used the
Xilinx ChipScope tools package to establish triggers for sig-
nal capturing upon certain corner conditions.

3.4. Network Transceivers

We first test the network transceiver module in a loop-
back arrangement, and later in a point-to-point direct con-
nection setup. We observe various forms of data scram-
bling. Improper RIO attribute settings lead to overflows
or underflows on the data lines with varying results at the
receiver side. Problems arising from clock differences be-
tween the sending and the receiving RIO transceivers are
complicated to trace. Moreover, they cannot readily be re-
vealed through simulation, as they occur after quite long
periods of operation. To counter such problems, we cap-
ture data at the transceiver level. For this purpose, we use
tracing memories to store data, and then software utilitiesto
read, decode and analyze them off-line. Moreover, we use
the Xilinx ChipScope tools extensively to obtain snapshots
of the system state.

We find that the use of CRCs at both headers and packet
payload is needed to detect data scrambling problems. We
have implemented a mechanism to “freeze” the NIC after
detecting such a problem. This allows us to capture state
information as close in time as possible to the instant when
the error occurred. The NIC includes several counters, ac-
cessible via the target interface, to track important events,
such as the arrival of a packet with a CRC error.

Since the network transceiver module bonds together

two RIO links, an important issue to be resolved is the
synchronization of transmission and reception from the two
links. This procedure relies on a pair of FIFO queues. Er-
rors in this part of NIC manifest themselves as data cor-
ruption events. The NIC appends two CRC values to each
outgoing message, for the header (CRC16) and the payload
(CRC32) respectively. Loss of synchronization between the
two RIO links usually results in one of the synchronization
FIFOs to become empty. With the particular FIFO imple-
mentation that we use, dequeueing from an empty FIFO re-
turns the last valid data item that was dequeued before the
FIFO became empty, thus resulting in duplicate data words.
We use simulation extensively to check the behaviour of
the RIO transceivers, varying the parameters of the RIO
transceivers to trigger the observed problems.

3.5. Credit-based Flow Control

The NIC relies on a credit-based flow control protocol,
to prevent buffer overflows that would lead to data loss. In
order for the credit protocol to work, correct initialization of
the word counters is needed. The FIFO size at the receiving
side end must be taken into account, so that at start-up this
is the free space known to be available downstream. A com-
plication that also needs to be handled is that a cumulative
counter will eventually overflow. In order to compensate for
this, the comparators at each side must be aware of value
wrap-around; otherwise, buffer overflow is likely to occur
at the receiver. To overcome this problem, we add two extra
bits for each counter to implement this mechanism.

Our tests of the credit-based flow control mechanism
have revealed cases where a header or its associated CRC
is occasionally not calculated properly at the enqueued or
dequeued data stream. In turn, this causes the word coun-
ters to slip in a slow but steady way, eventually leading to
buffer overflows. Simulations failed to reveal such errors,
as it would have to last for very long time periods in order
to reach such states. A debugging technique that we use is
to inject credits into the payload of the packets. Then, with
the aid of a software utility and the tracing memories in the
NIC, we track the updates of credits. Another issue is the
occassional corruption of credits, as a result of interference
between NIC modules. To ensure that no erroneous credit
is taken into account, we extend credits to include a parity
bit. A credit is discarded in case of parity mismatch.

Finally, flow control-related tests need to verify both that
the protocol is neither too conservative, leading to perfor-
mance degradation, nor too optimistic, leading to buffer
overflows and data loss. This is a point where correctness
and performance debugging become interwined. In order to
check the “back-pressure” caused through the credit mech-
anism, during tests we disable and re-enable DMA capabil-
ity in the receive-path. In configurations built around a 8x8

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 7

crossbar switch, we also carry out tests from many transmit-
ters to a single receiver, causing network paths to become
congested, thus stimulating back-pressure.

3.6. Timing Issues

Adding tracing capabilities to the NIC comes at the cost
of increasing the overall footprint and complicating the
place-and-route step in the synthesis process. Moreover,
the selection of tracing points directly affects the timingof
the overall circuit. For example, with the PCI version of the
NIC it is possible to capture at each 66 MHz PCI clock cycle
signals related to PCI activity. This is a tremendous help in
ensuring that the NIC conforms to PCI specifications. How-
ever, this is not possible with the 100 MHz PCI-X version
of the NIC, where the DMA engine’s clock time has been
significantly reduced (from 15.15 ns to 10 ns).

Moreover, the stricter PCI-X timing specification re-
quires careful checks concerning the placement and routing
of signals. PCI-X requires that signals follow certain tim-
ing constraints in order for the bus protocol to work reliably
when the signals cross several inches of PCB on the host
motherboard. Violating such constraints results in unreli-
able operation of the NIC as a whole, with varying mani-
festations, including incomplete transactions and data cor-
ruption at either the sender or the receiver-side. These con-
straints are challenging for FPGA-based prototypes and a
significant amount of effort has been dedicated to check-
ing conformance to the timing constraints. For timing con-
straint verification we use the Xilinx Timing Analyzer tool.

3.7. Integration of Crossbar Switch

We check the basic correctness of the buffered crossbar
switch alone, through functional simulations on post-place-
and-route models using ModelSim and NCSim. Then, we
use debugging and monitoring tools inside the switch. We
use ChipScope, and also a custom tool for monitoring the
switch via a serial terminal. This tool consists of a PowerPC
405 [5] processor that is provided as a hard block inside the
Virtex II PRO FPGAs, a custom processor bus peripheral
and a serial port controller. The embedded processor runs a
program that receives monitoring data from the switch and
sends them to a terminal connected through a serial port.
This data includes counts of the words transferred for each
of the flows going through the switch, the occupancy of
crosspoint buffers, and cycle counts for the time required
for forwarding a packet from a source to a destination.

4. Performance Debugging

Table 2 summarizes performance issues that we have
come across.

Performance Issues
Issue Detection
High interrupt frequency counters
Sender-side notification counters
RDMA Initiation cost counters
Conservative flow control rate sampling
I/O protocol inefficiencies measurement

Table 2. Summary of performance issues.

4.1. High Interrupt Frequency

Previous work has shown that interrupt cost can be ex-
tremely high in high-performancenetworks [26]. Given that
the I/O path in the kernel relies on interrupts for I/O request
completion, it is important to reduce the number of inter-
rupt handler activations. In our networked storage proto-
type, interrupts are required for messages that manipulate
queue head/tail values, so that the I/O target and the I/O
initiator get to consume I/O requests and completion notifi-
cations, respectively, from their respective queues.

PCI-X interrupt delivery requires asserting the level-
triggered interrupt line assigned to the NIC. This line has
to be cleared before the NIC can deliver a subsequent in-
terrupt. Once the top-half interrupt handler begins its exe-
cution, it disables further interrupt delivery and schedules
the execution of the bottom-half handler that handles the
details of issuing a block-level I/O request (target-side)or
handling an I/O operation completion (initiator-side). Once
the bottom-half has finished execution, it re-enables inter-
rupt delivery.

We modify the NIC’s interrupt delivery mechanism so
that the actions of enabling and disabling interrupts have
the side-effect of clearing the (level-triggered) interrupt line
assigned to the NIC. The bottom-half handler processes all
I/O requests or completions present in the queue. In the
meantime, the NIC may deliver additional requests, which
however will not cause additional interrupts. When the
bottom-half handler has finished processing all requests in
the queue, it enables NIC interrupts. Since the bottom-half
handler is interruptible, we have to ensure that there is no
race condition between enabling interrupts and returning
from the bottom-half handler by re-checking for new re-
quests in the queue as soon as interrupts are enabled. In
this manner, at high loads, the number of interrupts is re-
duced, since no interrupts are delivered as long as a node is
processing other requests.

4.2. Sender-side Completion Notifications

On the send path, upon completion of each out-bound
RDMA transfer, the issuer needs to deallocate the local han-

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 8

dle. Traditionally, NICs notify the host with an interrupt
when the send-path processing has finished. However, in-
terrupts incur high overhead. Instead, we use NIC support
for local notifications: When a local DMA operation com-
pletes, the NIC writes back (via DMA) a notification (in
the form of a 64-bit word) to a specified location in host
memory. The issuer, instead of spinning on this notification
word to eagerly free the transfer handle, checks lazily for
free transfer handles, when more requests are posted later.
This functionality of the NIC helps to reduce the host pro-
cessor’s load in the send-path.

4.3. Conservative Flow Control

Flow control prevents the sending NIC from transmitting
packets to a receiving host, if it is estimated that the new
packet will overflow the receiver’s inbound FIFO buffer.
This computation relies, among other factors, on an esti-
mate of the network round-trip time (RTT) [13]. The ac-
curacy of this estimate affects correctness, as an optimistic
estimate results in overflowing the receiver’s buffer. This
problem can be detected by using the status registers in the
receiving NIC.

The RTT estimate also affects performance, as a conser-
vative estimate reduces the transmission rate. In order to
counter this performance issue, the NIC incorporates a trac-
ing facility to record samples of the instantaneous through-
put, both incoming and outgoing. This facility uses a tracing
memory that records a number of samples, which is defined
by a register exposed through the target interface. These are
samples of the cumulative count of 64-bit words transmit-
ted and received. From these samples we get throughput
estimates. Moreover, the tracing facility records the occur-
rence of back-pressure events [15] during the time-line of
the sampling process. Using this facility to study the per-
formance of an earlier NIC version, we have been able to
determine that a finer-granularity estimate of the available
buffer space should be implemented. In this manner, we re-
duce the frequency of back-pressure events, resulting in a
10-15% increase of the achievable throughput, to the levels
shown in Figure 3.

4.4. I/O Protocol Inefficiencies

The issues so far are not specific for a particular appli-
cation of the NIC. We have also concerned ourselves with
issues specific to the efficiency of the remote block-level
I/O protocol (see Section 2.5). A limiting factor for the
achievable remote I/O throughput is the presence of short-
size RDMA transfers, needed by the remote I/O protocol for
managing queues of I/O commands and completions. Ac-
cordingly, we have adapted the I/O protocol so that queue
head and tail values are not explicitly updated, via RDMA

transfers. Instead, command and completion messages in-
corporate apending flag, so that the recipient can iden-
tify the messages that need to be processed; effectively, the
recipient determines on its own how to update its queue
tail. As discussed in [17], this change in the messaging pat-
tern between the I/O initiator and the I/O target results in
up to 10% improvement in the achievable block-level I/O
throughput, as measured for large transfer sizes.

5. Related Work

Very little has been published about the process of
debugging high-performance NICs, as the related papers
mostly focus on the overall design [7, 23, 10, 24] and per-
formance characteristics [22, 9, 16]. This is understand-
able, as these are the key differentiation points for high-
performance NICs. However, since the debugging process
is not presented in any detail, no experience or insight into
the practical aspects of developing such NICs is conveyed.
We believe that presenting highlights from the hands-on
process that we follow to debug our NIC, is a contribution
of practical interest that supplements the design and perfor-
mance aspects. A related development that we find promis-
ing is the availability of test-cases to verify standards con-
formance for iWARP-compliant NICs [12].

A point that came up during this process is that the de-
velopment of a NIC is fundamentally a problem of hadware-
software co-design. Current-generation design tools do not
adequately support such a co-design approach [11]. The au-
thors in [6] present a method for performance debugging
of distributed systems where the components are “black
boxes”. However, following this approach requires collect-
ing traces of system activity at various interface points to
infer the interdependencies between observed events. Our
experience shows that such tracing facilities can be incorpo-
rated into every major system module during design. Even-
tually, information from these sources may be collected and
processed by integrated debugging and monitoring frame-
works [25].

6. Concluding Remarks

In this paper, we present our experience from developing
and debugging a PCIX-based RDMA-capable NIC. We dis-
cuss the most important correctness and performance issues
we encounter. We also present the methodology and tools
we developed to detect and resolve each issue. Although
the NIC presented in this paper is implemented as a PCI-X
peripheral, we believe that the methodology and tools can
also be applied in a PCI Express implementation. Since PCI
Express is a packet-based interconnect [21], we could cap-
ture all packet-related information at all protocol layers, and
also measure performance-related events using counters.

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 9

Overall, we believe that with high-performance system
designs becoming more and more mainstream, it is essential
to provide standardized mechanisms for extracting state in-
formation from each component in the system. Such mech-
anisms should (1) allow for selective activation, (2) include
aggregate counts of events of interest, and (3) also include
state information snapshots in the form of histograms and
time-series. As we observe in the course of our work, these
mechanisms can be very expensive to build and integrate
when issues arise. Instead, they should be included from
the start in the design, and be treated as important, main-
tainable functions.

7. Acknowledgments

We would like to thank the members of the CARV lab-
oratory at ICS-FORTH, in particular Konstantinos Xini-
dis, Aggelos Ioannou, Giorgos Mihelogiannakis, and Prof.
Manolis Katevenis. We thankfully acknowledge the sup-
port of the European FP6-IST program through the SIVSS
(STREP-002075) and UNIsIX (MC-EXT-509595) projects,
and the HiPEAC Network of Excellence (NoE-004408).

References

[1] An infiniband technology overview. Infiniband Trade Asso-
ciation, http://www.infinibandta.org/ibta.

[2] Pci extender card, part no. 7564-uextm rev. b. Twin Indus-
tries, Inc, http://www.twinind.com.

[3] Rocket i/o user guide. Xilinx Inc,
http://www.xilinx.com/bvdocs/userguides/ug024.pdf.

[4] Xilinx chipscope pro. Xilinix, Inc.
http://www.xilinx.com/ise/optionalprod/cspro.htm.

[5] Powerpc 405 processor block reference guide:
Embedded development kit, 2005. Xilinx, Inc.
http://www.xilinx.com/bvdocs/userguides/ug018.pdf.

[6] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. InProceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2003.

[7] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovicm, and W. Su. Myrinet: A gigabit-per-second
local-area network.IEEE Micro, 15(1):29–36, 1995.

[8] I. Cadence Design Systems. Ncsim users manual.
http://www.cadence.com.

[9] D. Dalessandro and P. Wyckoff. A performance analysis of
the ammasso rdma enabled ethernet adapter and its iwarp
api. In Proceedings of the RAIT Workshop (in conjunction
with the IEEE International Conference on Cluster Comput-
ing), 2005.

[10] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shu-
bert, F. Berry, A. Merritt, E. Gronke, and C. Dodd. The vir-
tual interface architecture.IEEE Micro, 18(2):66–76, 1998.

[11] H. Hsieh, L. Lavagno, and A. Sangiovanni-Vincentelli.Em-
bedded system codesign: Synthesis and verification, 1996.

[12] U.-I. iWARP Testing Consortium. iwarp test suites.
http://www.iol.unh.edu/testsuites/iwarp/.

[13] G. Kalokairinos, V. Papaefstathiou, A. Ioannou, D. Simos,
M. Papamichail, G. Mihelogiannakis, M. Marazakis, A. Bi-
las, D. Pnevmatikatos, and M. Katevenis. Design and im-
plementation of a multi-gigabit nic and a scalable buffered
crossbar switch. Technical Report 376, FORTH-ICS, 2006.

[14] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and
N. Chrysos. Variable packet size buffered crossbar (cicq)
switches. InProc. IEEE Conference on Communications
(ICC 2004), 2004.

[15] H. T. Kung, T. Blackwell, and A. Chapman. Credit-based
flow control for ATM networks: Credit update protocol,
adaptive credit allocation and statistical multiplexing.In
Proceedings of the ACM SIGCOMM Conference, 1994.

[16] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas,
S. Kini, and D. Panda. Microbenchmark performance com-
parison of high-speed cluster interconnects.IEEE Micro,
24(1):42–51, 2004.

[17] M. Marazakis, K. Xinidis, V. Papaefstathiou, and A. Bilas.
Efficient block-level i/o over an rdma-capable nic. InPro-
ceedings of the ACM Int’l Conference on SuperComputing
(ICS), 2006.

[18] D. Mayhew and V. Krishnan. Pci express and advanced
switching: Evolutionary path to building next-generationin-
terconnects. InProceedings of the 11th IEEE Symposium on
High Performance Interconnects, 2003.

[19] I. Mentor Graphics. Modelsim se users manual.
http://www.model.com.

[20] I. Mindshare and T. Shanley.PCI-X System Architecture.
Addison-Wesley Professional, 2001.

[21] PCI-SIG. Pci express. http://www.pcisig.com.
[22] F. Petrini, F. E., and A. Hoisie. Performance evaluation of

the quadrics interconnection network.Journal of Cluster
Computing, 6(2):125–142, 2003.

[23] F. Petrini, W. Feng, A. Hoisie, S. Coll, and F. E. The
quadrics network: High-performance clustering technology.
IEEE Micro, 22(1):46–57, 2002.

[24] I. Pratt and K. Fraser. Arsenic: A user-accessible gigabit
ethernet interface. InProceedings of the IEEE Conference
on Computer Communications (INFOCOM), 2001.

[25] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields,
B. W. Schwartz, and L. F. Tavera. Scalable Performance
Analysis: The Pablo Performance Analysis Environment. In
Proc. IEEE Scalable Parallel Libraries Conf., 1993.

[26] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. Tcp on-
loading for data center servers.IEEE Computer, 37(11):48–
58, 2004.

3rd Workshop on Remote Direct Memory Access (RAIT2006) withIEEE CLUSTER, September 2006, Barcelona, Spain 10

