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ABSTRACT
Building commodity networked storage systems is an important ar-
chitectural trend; Commodity servers hosting a moderate number
of consumer-grade disks and interconnected with a high-performance
network are an attractive option for improving storage system scal-
ability and cost-efficiency. However, such systems incur significant
overheads and are not able to deliver to applications the available
throughput. We examine in detail the sources of overheads in such
systems, using a working prototype to quantify the overheads as-
sociated with various parts of the I/O protocol. We optimize our
base protocol to deal with small requests by batching them at the
network level and without any I/O-specific knowledge. We also re-
design our protocol stack to allow for asynchronous event process-
ing, in-line, during send-path request processing. These techniques
improve performance for a 8-disk SATA RAID0 array from 200 to
290 MBytes/s (45% improvement). Using a ramdisk, peak perfor-
mance improves from 320 to 474 MBytes/s (48% improvement),
which is 72% of the maximum possible throughput in our experi-
mental setup. We also analyze the remaining system bottlenecks,
and find that although commodity storage systems have potential
for building high-performance I/O subsystems, traditional network
and I/O protocols are not fully capable of delivering this potential.

Categories and Subject Descriptors
C.2 [Computer System Organization]: Performance of Systems;
C.4 [Computer System Organization]: Computer System Imple-
mentation; D.4.2 [Software]: Operating Systems—Storage Man-
agement

General Terms
Performance, Measurement

Keywords
block-level I/O, I/O performance optimization, RDMA, commod-
ity servers
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1. INTRODUCTION
Increasing needs for storing and retrieving digital information

in many application domains pose significant scalability require-
ments on modern storage systems. Moreover, such needs become
more and more pressing in low-end application domains, such as
entertainment, where cost-efficiency is important. To satisfy these
needs, currently, storage system architectures are undergoing a tran-
sition from directly- to network-attached.

Previous work [19] has shown that building commodity networked
storage systems is challenging and results in high network over-
heads. In particular, although commodity systems can provide ad-
equate raw throughput in the I/O path from server disks to applica-
tion memory, storage systems are not able to exploit it fully. The
main reasons for this, as identified in [19] are: (a) Storage-specific
network protocols require small messages for requests and comple-
tions; (b) Event completion is by nature asynchronous in modern
architectures and consumes significant resources on both storage
(target) and application (initiator) servers.

We expect that high-performance (e.g. 10 GBit/s) network inter-
face controllers (NICs) that do not offer offloading characteristics
will quickly become more affordable and therefore will be used
extensively in commodity-grade servers. Currently, 10 GBit/s net-
working capability is supported by a number of commercial prod-
ucts, with a range of interconnect technologies. Specific examples
include: (1) 10GbE offerings from Myricom [4] and Chelsio [2],
(2) traditional cluster-interconnect technologies from Myricom [7]
and Quadrics [24, 23], and (3) interconnects based on the Infini-
band standards [1] from Mellanox [3], NetEffect [9], and other
vendors. [15] presents a representative performance comparison
of such interconnects. Remote RDMA is well understood and we
expect it to be available in all such NICs. Ethernet-based NICs also
provide such capabilities, e.g. based on the iWARP protocol [12]
and there are ongoing efforts for interoperability between vendors.

In this work we investigate the sources of overheads. We use our
custom-built NIC, since this option gives us control over most as-
pects of the I/O data path. We start from a base storage access pro-
tocol over the NIC, and then clearly identify the parts of the proto-
col that contribute to throughput bottlenecks. Our NIC is capable of
10 GBit/s (1.2 GBytes/s) throughput. However, due to PCI-X limi-
tations, peak throughput in simple user-level, memory-to-memory,
one-way transfers is about 626 MBytes/s (4 KByte messages in
a two-node configuration connected back-to-back). The NIC and
network provide reliable, in-order delivery without software proto-
col support. On top of this network, we develop an optimized re-
mote storage protocol, extending the protocol designed in previous
work [19]. As we are mostly concerned with network performance,
we perform experiments with configurations that exercise parts of
the full I/O data path, including a ramdisk block device, and in the



end we also present results from real disks as well.
We consider how overheads from (a) small messages and (b)

asynchronous event processing can be mitigated. For (a) we use a
batching technique that operates at the network layer and transpar-
ently batches small messages (requests and completions) in the net-
work queues both at the initiator and the target sides. The send-path
in the I/O protocol stack, detects small messages in the network
queue and issues a single remote DMA write request for a batch
of messages, without interpreting their contents. The receive-path
transparently treats this batch as multiple requests arriving concur-
rently, and services all requests and completions it includes. In
all cases, data transfers (each of 4-KByte size) are serviced one
by one. For (b) we modify the I/O protocol stack, both the send
and receive path to allow for asynchronous event completion at any
point during processing. Traditionally, asynchronous event com-
pletion occurs in interrupt handlers. Our base protocol uses asyn-
chronous events only for remote messages. Local completions (e.g.
for DMA transfers) are handled with a lightweight polling mecha-
nism. Moreover, our base protocol performs batching of interrupts.
In this work, we modify the protocol structure to allow execution
of completion tasks not only in interrupt contexts (in the receive-
path), but during the send path as well.

These optimizations improve end-to-end performance from 320
to 474 MBytes/s, when using a ramdisk. We see that our tech-
nique for processing completions during send-path processing is
very effective in reducing (on average) the number of interrupts
from one-every-8 requests to one-every-64 requests both at the tar-
get and the initiator. Both techniques are most effective when the
workload consists of multiple concurrent threads. This results in
more concurrent requests that provide more opportunity to process
I/O completion events in the send-path.

When using eight SATA disks in a RAID0 array that offers a
maximum throughput of about 450 MBytes/s, our base protocol
achieves a maximum throughput of about 200 MBytes/s, whereas
our enhanced protocol increases this by 45% to about 290 MBytes/s.
At this point, the single PCI-X bus at the target becomes the lim-
iting factor, as it has to carry the data traffic twice; For reads, the
data is moved from disk to memory, and then moved again from
memory to the network.

We then examine the remaining bottlenecks that limit end-to-
end I/O throughput to 474 MBytes/s compared to the 626 Bytes/s
achievable with at user-level. In our analysis we replace pieces
of the protocol and create three “fake” configurations that exclude
certain overheads. In this manner we are able to exactly pin-point
limitations. We find that the throughput of the “fake” configura-
tions is limited by CPU overheads (mostly at the target side).

Overall, we find that high performance I/O is possible over com-
modity components. However, the protocol used for remote stor-
age access, needs to be designed specifically for dealing with lim-
itations of commodity systems for small messages and for asyn-
chronous event processing.

The rest of this paper is organized as follows. Section 2 presents
the necessary background from previous work, including an overview
of the RDMA-capable NIC used. Section 3 presents our proto-
col optimizations for batching and asynchronous event processing.
Section 4 presents our performance evaluation and analysis of re-
maining bottlenecks. Section 5 presents related work. Finally, Sec-
tion 6 draws our conclusions.

2. BACKGROUND
Current research efforts examine the feasibility of attaching stor-

age to large systems through system area networks. The proposed
architectures usually attach 4-32 (low-end) SATA disks to storage

controllers that are similar to today’s PCs equipped with low-end
disk controllers. These storage nodes are then attached to a system
area network accessible by application servers. Although varia-
tions of this architecture exist, overall most proposals follow the
basic trend of building on commodity components.

In this work, we start from the remote block-level storage system
described in [19, 18]. This system relies on a high-performance
network interface card (NIC) capable of performing remote DMA
(RDMA) write operations, and delivering transfer completion no-
tifications. The original version of the NIC used two such links; in
this work we use an enhanced version that combines four Rocket
I/O [5] links to achieve 10 GBit/s data rate. The NIC is a 64-bit
PCI-X [21] peripheral, running at 100 MHz.

Such systems require an I/O protocol for accessing storage re-
motely, through the interconnect. In our previous work [19], we
designed a block-level I/O protocol stack, consisting of kernel mod-
ules for the initiator and target sides of the I/O path. The initiator
and target modules provide remote storage access at the block-level
in the kernel. All applications at the initiator can access the remote
block device, as if it were a directly-attached physical block device.
This guarantees transparent access to the remote storage available
at the target. As a result, we can for example construct file systems
on top of a remote block device. Overall, the initiator’s primary
task is to forward I/O requests to the target, receive notification of
completion, and finalize the I/O requests by invoking the appro-
priate call-back function for each application block request. Our
base block-level I/O protocol encapsulates all performance-critical
I/O commands and their resulting data and completion notifications
into RDMA operations.

Our previous work [19] presents the design of the I/O protocol
and a number of optimizations for (1) reducing protocol messages,
(2) dynamically coalescing interrupts, and (3) statically batching
I/O requests. We find that, despite these optimizations, the system
achieves a maximum of 320 MBytes/s when using a ramdisk and a
maximum of 200 MBytes/s when using real disks (8 SATA disks in
a RAID0 configuration capable of about 450 MBytes/s).

In this paper, we extend our previous work, as follows:

• We present a more elaborate technique for eliminating in-
terrupts related to both I/O commands at the target and I/O
completions at the initiator. This technique relies on a hy-
brid polling scheme, that enables to process I/O completions
while still in a send-path context and, symmetrically, to re-
cover and issue I/O commands at the target while still in a
receive-path context.

• We explore the performance characteristics of a range of “fake”
configurations that constitute aprts of the real I/O data-path
between the initiator and the target. This approach allows to
highlight the performance limits along the I/O data-path.

• We consider in our experimental evaluation the relationship
between interrupt counts and CPU utilization, at both the ini-
tiator and the target, with the throughput levels achieved, for
a varying number of I/O issuing threads.

For our purposes, we define a commodity-grade server as a
host machine that incorporates mostly mainstream hardware com-
ponents, selected based on their cost/performance ratio rather than
their native performance and/or reliability potential. Specifically,
we focus on machines running general-purpose OS kernels, and
hosting only a moderate number of low-cost disks, without use of
specialized storage device controllers (such as FibreChannel [14]).
Moreover, we assume that such a server is dedicated to a sole I/O-
related role (either initiator or target). Our current experimental



system relies on a PCI-X bus-based NIC; we expect that NICs
based on the PCI-Express [6] serial-lane standard will become more
affordable, allowing commodity-grade servers to take advantage of
its robust flow-control mechanisms and its performance potential
[20, 16].

3. PROTOCOL DESIGN
In this section we outline the base protocol for remote block-

level I/O, and then describe optimizations aimed to improve its ef-
ficiency.

3.1 Base Protocol
The base remote block I/O protocol [19] makes use of RDMA

operations to forward block read and write requests from the initia-
tor to the target. Both the target and the initiator maintain circular
queues for I/O commands and completions, respectively, as well
as a pool of page-sized data buffers. At both sides, the local host
only consumes entries from its queue, whereas the remote host only
adds entries to this queue. Data blocks involved in read and write
block-level I/O requests are directly transferred to remote buffers
with RDMA writes, without going through the queues.

In the case of remote write I/O operations, the initiator selects
one of the available reserved pages and transfers in that page the
data to be written to block storage. The target uses this page for
issuing the requested I/O operation. Upon completion, the target
notifies the initiator of the outcome and the initiator marks the page
as available for use in subsequent requests. In the case of remote
read I/O operations, the initiator indicates the address of the page,
as specified by the local OS kernel’s block I/O framework, where
the data from the remote block storage should be placed. The target
reserves a local page to issue the requested I/O operation. Upon
completion, the target transfers via remote DMA the data from its
local page to the initiator’s page. The base protocol incorporates
three optimizations:

• It reduces the number of messages required for managing
the request queues by eliminating explicit updates to queue
head/tail pointers. Instead, it uses special markers in each
I/O request to differentiate valid from invalid requests.

• To reduce the number of interrupts, the protocol statically
batches interrupts when I/O requests are prepared and issued
at the initiator side. The protocol marks only the last 4-KByte
request of a longer sequence of requests for generating an
interrupt at the target. This triggers interrupts at the target
side only every few requests.

• To further minimize the number of interrupts asserted at each
node the base protocol employs an interrupt silencing tech-
nique, as follows: Interrupt handlers are organized in two
parts, a non-interruptible part that runs as soon as the inter-
rupt is delivered and an interruptible one that may be sched-
uled for execution through the system scheduler. The bottom-
half handler, when scheduled, will process all requests present
in the command queue. In the meantime, the NIC may de-
liver additional requests, which however, will not cause ad-
ditional interrupts. When the bottom-half handler has fin-
ished processing all requests in the queue, it enables NIC
interrupts. Since the bottom-half handler is interruptible, we
ensure that there is no race condition between enabling in-
terrupts and returning from the bottom-half handler by re-
checking for new requests in the command queue as soon as
interrupts are enabled. In this manner, at high loads no in-

terrupts are delivered as long as a node is processing other
requests.

3.2 Asynchronous event processing
Our previous work has shown that although these optimizations

are effective, overall system throughput is still lagging significantly
compared to raw hardware performance. We see that interrupts
counts are still high, despite the base protocol optimizations. For
this reason we introduce the following extensions: static target-side
interrupt batching and send-path asynchronous event processing.

First, we extend the simple batching technique used at the initia-
tor to also apply to the target side. Responses prepared by the target
are marked appropriately so that longer sequences generate inter-
rupts every few responses. This statically reduces the number of
interrupt service routine activations at the initiator, thus, lowering
its overall CPU utilization. Target-side interrupt batching is some-
what different in each design and implementation as the target does
not have access at once to all responses that correspond to a single
user-initiated I/O operation. Responses are generated only as each
4-KByte request is being completed by the physical-disk driver at
the target, thus requiring additional state. To effect batching of in-
terrupts at the initiator, the target counts the number of completions
that correspond to I/O commands that had been setup to trigger an
interrupt at the target. We have experimentally determined that a
good value for batching interrupts at the initiator is 8, whereas at
the target the batching-factor is 2.

Then we examine how asynchronous events can be further re-
duced by processing them inline during send-path processing in
the I/O stack. The basic idea is that I/O completions are especially
harmful at high I/O request rates. However, when there is a large
number of I/O requests, the system tends to spend more time in the
send path of the I/O stack. Thus, there is opportunity to process
in-line completions of previous requests that have already arrived
at the initiator. Doing so can reduce significantly the need for in-
terrupts and context switches.

To achieve in-line processing of request completions (and all
asynchronous events) we need to ensure proper synchronization be-
tween the interrupt context and the send-path. The send-path at the
initiator checks for I/O completions as soon as it finishes posting all
pending I/O requests. Checking is done by polling the I/O comple-
tion queue for new arrivals, while keeping interrupt delivery from
the NIC disabled.

Although our initial approach was to stop polling for comple-
tions as soon as the arrival queue was found empty, it turns out
that a different, simple heuristic is very effective: As long as at
least one I/O completion is found in the arrival queue, the protocol
keeps polling the queue until it retrieves an I/O completion that has
the interrupt bit set. This heuristic combines static interrupt batch-
ing information at the target with inline processing at the initiator
and results in significant reduction of interrupts.

After posting pending I/O commands, if the send-path finds no
I/O completions pending, it will finish its execution, leaving inter-
rupt delivery from the NIC enabled; later arrival of an I/O comple-
tion will be able to trigger an interrupt that will lead to I/O comple-
tions being processed.

This coupling of the send-path with the receive-path processing
is also applied at the target side. The code that posts I/O comple-
tions checks for new I/O commands before completing its execu-
tion. In this manner, we strive to issue new I/O commands as soon
as possible, without incurring the overhead of having to schedule
an interrupt-handling context.

We expect this optimization to be most effective for the smaller
I/O request sizes, in particular in the case of a single I/O issu-



ing thread. With more threads, and especially with large request
sizes, we expect to find several pending-to-be-processed I/O com-
mands and completions, at the target and at the initiator respec-
tively. Moreover, the CPU utilization of the initiator is expected to
be higher, since the send-path code spends some of its time polling.

3.3 Small RDMA-request batching
Due to the high initiation cost over the PCI-X bus and the over-

head associated with PCI-X arbitration, small messages have a sig-
nificant negative impact on performance. To reduce the overhead
from posting RDMA descriptors for small RDMA transfer requests,
such as those encapsulating I/O commands and completions, we in-
troduce batching at the network layer in the I/O stack.

The initiator’s block I/O layer in the send-path fills-in the net-
work request queue as before. However, the network layer, instead
of issuing an RDMA request for each separate request in the queue,
it issues an aggregate transfer request. Currently, each aggregate re-
quest consists has a size of 4 KBytes (page size). For read requests
the send-path code just sends the aggregate request to the target,
where the separate commands are placed in consecutive positions
of the I/O command queue. For write requests, the send-path also
posts RDMA transfer descriptors for the page-sized data blocks to
be written by the target to the disks.

This batching technique is also applied at the target for the I/O
completion messages. Thus, under a sequential I/O workload both
sides take steps to reduce the overhead of posting RDMA descrip-
tors. Since I/O commands and completions consume 64 bytes in
our current implementation of the remote I/O protocol, we can fit
up to 64 such message in a page-sized buffer, which is currently the
maximum RDMA transfer size.

3.4 I/O Path
Figure 1 illustrates the data path that needs to be traversed for

each remote I/O operation: I/O request processing starts at the I/O
initiator node, after the data consuming application (data produc-
ing application in the case of writes) issues I/O system calls to the
local OS kernel. I/O requests reach the block-device driver that
implements the initiator’s side of the remote block-level I/O pro-
tocol (marked IBD in Figure 1). At this point, I/O commands are
encapsulated in messages that are transmitted by issuing RDMA
operations. This step entails posting RDMA transfer descriptors to
be consumed by the NIC. Posting the RDMA descriptors involves
PCI-X writes. Actual transfers from the initiator’s host memory
involve PCI-X reads, from a “pinned” memory region reserved for
I/O commands, without the need for a data copy by the NIC driver.
Messages are serialized and encoded for transmission over the set
of RocketIO links. The NIC at the target collects incoming mes-
sages (deserialization and decoding), and directly places them into
the target host’s memory. After placement of an I/O command, the
NIC can trigger an interrupt to notify the target’s side of the I/O
protocol (marked TBD in Figure 1) of the new arrivals. The tar-
get issues the I/O commands to its locally-attached block devices.
This step is handled asynchronously, as the target will be notified
of I/O completions via a local interrupt raised by the storage device
controller. I/O issue and transfer of commands and data by the tar-
get to/from the storage devices involves DMA operations over the
target’s PCI-X bus. Once the target is notified of local I/O com-
pletion, it transmits the corresponding data to the initiator together
with an I/O completion message, by posting RDMA descriptors.
The I/O completion is set to trigger an interrupt at the initiator,
so that the IBD driver can locally complete the corresponding I/O
request. Writes are handled in a corresponding manner, again by
traversing the data-path between initiator and target.

4. PERFORMANCE EVALUATION
In this section we first present our experimental platform. Then

we present a performance evaluation of our optimized protocol and
finally, we discuss the remaining system bottlenecks.

4.1 Experimental Setup
The prototype we use in our experiments consists of two Dell

1600SC servers, each with a single Intel Xeon CPU, running at 2.4
GHz, 512 MBytes of main memory, and two 64-bit PCI-X slots
running at 100 MHz. One of the nodes serves as I/O target, with
8 directly-attached SATA Western Digital disks (WD-800), con-
nected to a BroadCom RAIDcore BC4852 controller. Total capac-
ity is 614.1 GBytes. On the I/O target node, the storage controller
and the NIC occupy slots on the same (only available) 100 MHz
PCI-X bus. The two nodes have a dedicated IDE system disk, and
two types of interconnects: a Gigabit Ethernet adapter for system
administration and monitoring, and our custom NIC for all data
transfers. The results presented in this section were obtained with
these two endpoints, connected back-to-back, with 4 RocketIO se-
rial links (i.e. without an intervening switch).

In our block-storage experiments we use a RAID-0 volume for
all disks at the storage node. We build this volume using the Linux
multi-disk (MD) driver with the stripe size set to 128 KBytes. The
initiator binds to the storage node and its single (RAID) volume
through our I/O path. The remote volume appears locally as a reg-
ular block device, indistinguishable from local devices. Each of the
8 SATA disks attached to our storage node is capable of a sequen-
tial I/O rate in the order of 60 MBytes/s for both read and write
accesses, with an average seek latency of 14 milliseconds.

In our evaluation we use the xdd benchmark [13] with the “di-
rect I/O” (-dio) option to bypass the initiator’s buffer cache. We
generate sequential I/O workloads, in order to achieve close to peak
I/O performance for the various system components. We vary the
request size from 64 up to 512 KBytes. Each experiment transfers a
total of 4 GBytes (a total volume of 1048576 4-KByte data blocks)
between the initiator and the target. The metrics that we report in
our experiments are summarized in Table 1. We vary the number
of I/O issuing threads (q) from 1 to 4.

4.2 Optimized Protocol
Figure 2 shows the I/O throughput using the base I/O protocol for

a remotely-accessed ramdisk block device. We achieve up to 320
MBytes/s, but as we we will show in Section 4.3.3 it is possible
to achieve up to 48% higher throughput with the optimized pro-
tocol. The improvement is derived mostly from eliminating more
interrupts at both initiator and target.

Table 2 shows the number of interrupts triggered at the initiator
and at the target, under the hybrid polling scheme described in Sec-
tion 4.2, for sequential reads and writes. We observe that a signif-
icant degree of interrupt coalescing is achieved. The I/O workload
for each of these runs consists of 1048576 4-KByte requests, there-
fore our (static) policy for setting up an I/O command to trigger an
interrupt at the target could trigger up to 131072 interrupts, 1 every
8 I/O requests. Likewise, our policy for setting up an I/O comple-
tion to trigger an interrupt at the initiator could trigger up to 65536
interrupts, 1 every 16 I/O completions.

Now we examine the effectiveness of our optimizations. Asyn-
chronous event processing in the send-path (both initiator and tar-
get) exhibits a trade-off between the degree of polling, CPU utiliza-
tion, and achieved throughput. Although polling may help avoid
several interrupt activations, this is not necessarily a guarantee for
higher I/O throughput. To illustrate this point, we present results
for three alternative schemes for the polling scheme, for sequential
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Figure 1: Data path for remote block-level I/O.

Table 1: Evaluation metrics.
MB/s I/O throughput, expressed in MBytes/sec
R-IRQs-I interrupt count, at initiator, with sequential read workload
R-IRQs-T interrupt count, at target, with sequential read workload
R-CPU-I CPU utilization (%), at initiator, with sequential read workload
W-IRQs-I interrupt count, at initiator, with sequential write workload
W-IRQs-T interrupt count, at target, with sequential write workload
W-CPU-I CPU utilization (%), at initiator, with sequential write workload

reads issued by two concurrent threads:

• Anticipatory polling: The polling loop completes when the
send-path code at the initiator finds an I/O completion (cor-
respondingly, the receive-path code finds an I/O command at
the target).

• Aggressive polling: Polling ends when at least one interrupt-
triggering I/O completion is found at the initiator (correspond-
ingly, an I/O command at the target). In other words, with
this setting we spend more time waiting for an arrival, by
polling even if there are currently no I/O commands or com-
pletions found.

• Minimal polling: After posting all pending I/O completions
at the initiator, the send-path code checks only once for any
arrivals of I/O completions, without explicitly checking for
arrivals that would trigger an interrupt (likewise at the target).

Table 3 shows the results for each polling scheme. All schemes
achieve comparable throughput levels, since in all runs the I/O tar-
get is completely saturated. We observe that with the aggressive
scheme we greatly reduce the number of interrupts at the initia-
tor, at the cost of significantly higher CPU utilization. The min-
imal scheme leads to almost the same behavior as the aggressive
scheme, showing that most of the time there are pending I/O com-
pletions at the initiator (I/O commands at the target). Therefore, it
makes sense from a performance point of view to anticipate their
arrival and process them in-line rather than having to schedule an
interrupt-processing context to handle them. The anticipatory set-
ting leads to lower CPU utilization at the initiator, therefore it is our
preferred setting for all the experiments reported in this paper.

4.3 Analysis of Remaining Bottlenecks
We now examine the remaining system bottlenecks. The theoret-

ical maximum throughput of the host-NIC DMA engine is one 64-
bit word at every 100-MHz PCI-X clock cycle or 762.9 MBytes/s,

assuming zero bus arbitration and protocol overheads. Practically,
the maximum achievable PCI-X bus throughput is less than the the-
oretical peak. Using a hardware-based benchmark, we measured
DMA transfer rates up to 659.2 MBytes/s from the host memory to
the NIC, and up to 678.1 MBytes/s in the opposite direction. The
theoretical maximum throughput when using four Rocket I/O links
is two 64-bit word at every 78.125-MHz Rocket-I/O clock cycle,
i.e. 1192 MBytes/s. Therefore, the maximum theoretical end-to-
end throughput is limited to that of the PCI-X bus.

Figure 3(a) summarizes the results from a simple user-space bench-
mark that measures the maximum achievable throughput. This
benchmark initiates one-way transfers, i.e. without waiting for any
response from the receiver, by posting RDMA descriptors in the
NIC-resident RDMA request queue. After each descriptor has been
posted, this benchmark checks the local notification word written
by the NIC in host memory to obtain the head and tail values for
the RDMA request queue, so that it can ensure that there is suffi-
cient space for posting the next RDMA descriptor. PCI-X write-
combining is enabled for the transmitting endpoint. This feature
allows more efficient posting of RDMA descriptors from the host
to the NIC-resident RDMA request queue. We achieve up to 626
MBytes/s, which is 95% of the practical limit for the PCI-X bus at
the initiator.

To reveal the remaining system bottlenecks that are responsible
for not achieving the same throughput when performing I/O we ex-
amine three “fake” configurations, each completing requests pre-
maturely, and at a different point in the I/O path:

• FAKE(I): I/O operations are encapsulated into protocol mes-
sages and transmitted to the I/O target, which however is
disabled. The I/O initiator unilaterally completes I/O oper-
ations, without waiting for the I/O target.

• FAKE(I+T): I/O operations are completed by the I/O target
immediately upon reception, without actually issuing I/O re-
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Figure 2: I/O Throughput using the base I/O protocol on a remote ramdisk, for sequential reads and writes.

Table 2: Interrupt counts (initiator, target in 1000s) and % CPU utilization (initiator) for the REMOTE(RAMDISK) configuration.
# threads 1 2 3 4
I/O size 64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512
R-IRQs-I 65.5 65.5 65.5 57.3 62.2 38.1 49.1 41.7 65.5 39.9 49.1 41.5 65.5 40.3 49.1 41.5
R-IRQs-T 65.5 32.7 16.3 8.1 32.7 20.4 15.1 8.1 27.7 19.1 15.1 8.1 30.4 19.2 15.2 8.1
R-CPU-I 21.4 25.2 37.0 28.5 32.8 41.3 40.2 32.1 48.4 38.6 38.5 35.2 45.5 39.8 32.1 36.4
W-IRQs-I 65.5 65.5 65.5 58.0 33.1 32.7 32.7 32.3 62.8 32.9 32.7 32.6 63.4 32.9 32.7 32.6
W-IRQs-T 65.2 63.7 64.0 63.2 65.1 64.7 64.4 64.3 63.3 64.4 64.5 64.4 64.6 64.5 64.5 64.4
W-CPU-I 23.6 33.9 39.5 39.7 47.4 59.8 57.2 55.5 67.2 64.1 56.8 56.1 67.2 58.9 55.8 56.6

quests to its directly-attached storage devices. The I/O initia-
tor waits for I/O completion messages from the I/O target.

• REMOTE(RAMDISK): The I/O target fully implements the
remote block-level I/O protocol; however, it issues I/O re-
quests to a local block device that implements a ramdisk.

4.3.1 FAKE(I)
Figure 3(b) shows the throughput achievable with the FAKE(I)

configuration for a sequential I/O workload consisting of write op-
erations with sizes in the range 64-512 KBytes. This configuration
serves to investigate one-way data transfer throughput, therefore it
can be compared with the results show in Figure 3(a).

We observe no significant variation to the achievable throughput
as the number of threads varies, when request size is equal or larger
than 128 KBytes. Even with only one thread, CPU utilization at the
initiator reaches almost 100%, leaving no available CPU cycles for
issuing more requests. We achieve about 560 MBytes/s, or around
90% of the maximum one-way throughput of the user-level test,
as shown in Figure 3(a). This corresponds to 85% of the practical
limit of the PCI-X bus at the initiator.

4.3.2 FAKE(I+T)
Figure 4 shows the throughput achievable with the FAKE(I+T)

configuration, for sequential read and write requests, with up to 4
threads. This configuration achieves up to 550 MBytes/s or 98% of
the throughput achieved with FAKE(I). This corresponds to 83% of
the practical limit of the PCI-X bus at the initiator.

We observe a marked increase of the achievable throughput when
the number of threads changes from 1 to 2, reaching the throughput
achievable with FAKE(I); with 3 or 4 threads, no further throughput
increase is observed. With two threads, the initiator can overlap
send-path processing from one of the threads with new I/O requests
from user-space, effectively increasing the number of I/O requests
in-flight. With more more threads this benefit is diminished due to
context-switching overheads.

CPU utilization at the I/O initiator for sequential read I/O re-
quests (Table 4) reaches up to 52%; for write requests, CPU utiliza-
tion at the initiator reaches up to 78%. However, at the target side,
CPU utilization peaks at almost 100%, for both read and write re-
quests. In the case of a read I/O request, the I/O initiator has to ini-
tiate RDMA transfers for (short) I/O command messages and then
to handle I/O completion message arrivals. The data from the read
requests are directly placed in the initiator’s host memory without
burdening the CPU with any processing. However, the CPU has to
handle interrupts that signal the arrival of I/O completions. In the
case of write I/O requests, the initiator has to perform more work in
the send-path, including the initiation of an extra RDMA operation
for transferring each data page to the I/O target.

4.3.3 REMOTE(RAMDISK)
Figure 5 shows the throughput achieved with a local ramdisk,

i.e. without using our remote block-level I/O protocol. The ma-
jor limitation is the overhead of copying data between kernel- and
user-space, as part of handling read/write() system calls. This
local configuration does not entail interrupt processing at the target
originating from the ramdisk block device.

Figure 6 shows the throughput of REMOTE(RAMDISK) for se-
quential I/O requests with up to 4 threads. Table 2 shows that CPU
utilization for read requests reaches up to 48%; for write requests
CPU utilization at the initiator reaches up to 67%. In this config-
uration the initiator performs the same amount of work as in the
FAKE(I+T) configuration but the target has to perform memory-
copy operations when processing read/write requests from/to the
ramdisk block device. However, in this configuration the target
still does not have to handle interrupts triggered from the block de-
vice. For most runs, the initiator’s CPU utilization is slightly lower
(up to 10% for reads, up to 17% for writes) in comparison with
FAKE(I+T). Overall, we achieve up to 484 MBytes/s, which is
88% of the throughput achieved with FAKE(I+T).

In the next set of experiments, we evaluate the impact of interrupt
processing at the I/O target, by experimenting with a RAID-0 array
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Figure 3: Throughput for base, user-level NIC communication and for the FAKE(I) configuration. Both of these experiments exhibit
one-way data flow only.

Table 3: Comparison of three alternative settings (anticipatory, aggressive, minimal) of the polling scheme. The workload consists of
sequential reads with two I/O issuing threads: Results show the number of interrupts (initiator, target) and CPU utilization (initiator)
for the REMOTE(RAMDISK) configuration (I/O size in KBytes).

MB/s R-IRQs-I R-IRQs-T R-CPU-I
I/O size Ant Aggr Min Ant Aggr Min Ant Aggr Min Ant Aggr Min

64 359.3 483.1 483.2 62280 11 7 32771 50136 56831 32.8 100.0 100.0
128 467.9 478.2 477.0 38171 16383 16381 20444 16374 16374 41.3 41.3 49.1
256 471.2 476.2 475.5 49144 16381 16386 15148 15384 15797 40.2 40.2 49.5
512 473.3 475.2 475.4 41700 20423 20432 8182 4187 4174 32.1 32.1 40.5

consisting of 8 SATA disks. We expect the additional load at the
I/O target to affect the overall I/O throughput.

4.4 Real-Disks Configuration
Figure 8 shows the throughput achieved when using the 8-disk

RAID0 device, for sequential I/O requests with up to 4 threads. For
comparison, the corresponding throughput results with the RAID0
array locally-attached are shown in Figure 7. We see that the maxi-
mum throughput in the locally-attached case is around 450 MBytes/s.

The highest I/O throughput achieved with the actual disks and
including our optimizations is about 290 MBytes/s for reads and
283 MBytes/s for writes. The main reason for the reduced perfor-
mance compared to the ramdisk configuration is the existence of a
single PCI-X bus at the target. path between initiator and target.
In particular, the target has to handle not only interrupts for I/O
commands emanating from the NIC, but also interrupts triggered
by the SATA storage controller to signal completion of previously
posted I/O operations. Moreover, a major limitation is that both the
NIC and the disk controller at the target reside on the same PCI-
X bus. This bus has to be traversed twice for each I/O command:
first from the storage device controller to the target’s host memory,
and then from the target’s host memory to the NIC for transmission
back to the initiator. As mentioned above, the maximum achievable
throughput of our PCI-X is about 660 MBytes/s resulting in a peak
end-to-end I/O throughput of about 330 MBytes/s.

5. RELATED WORK
As mentioned earlier, the NIC prototype we use and the base I/O

protocol have been presented in our previous work [19, 18]. That
previous work established the baseline performance for our sys-
tem. In this paper, we present and evaluate optimizations for asyn-
chronous event processing and request batching that significantly
improve I/O throughput. We also analyze the remaining system
bottlenecks by instrumenting our working prototype.

RDMA [25, 1, 11] has become a core capability for low-latency,
high-throughput interconnects. The authors in [15] evaluate the
performance characteristics of 3 types of RDMA-capable intercon-
nects: Myrinet [7], Quadrics [24, 23], and Infiniband [1]. The eval-
uation in [15] also explores the implications of completion notifi-
cation and address translation capabilities in the NIC. The evalu-
ation in [16] shows the performance advantages of implementing
an Infiniband NIC over a serial, point-to-point interface (as in PCI
Express), over the more common local I/O bus architecture (as in
PCI-X). This evaluation focuses mostly on MPI workloads.

Previous work has shown that interrupt cost can be extremely
high in high-performance networks [26] and that it is important to
reduce the number of interrupts. Interrupt silencing has been used
in the past in lower speed interconnects [30], where interrupt cost is
not as important. In our work we design and implement this tech-
nique on a faster interconnect and also evaluate in detail its impact
on system performance. Request batching has been used in var-
ious contexts. Our approach does not delay messages, but rather
notifies the receiver that “more will follow” so it may wait before
taking specific actions. Unlike previous work, we examine the ef-
fectiveness of this technique with respect to remote disk schedul-
ing. Finally, although previous work has presented protocols for
access to remote storage [30], our work quantifies the effect of var-
ious aspects in modern, serial-link based interconnects.

Previous work has examined the benefits from using RDMA-
capability for improving the performance of storage systems. RDMA-
assisted iSCSI [17] uses Infiniband to reduce host overheads. PVFS2-
over-Quadrics [29] uses Quadrics to improve the performance of
the PVFS2 parallel filesystem. Our work focuses on low-level over-
heads such as interrupt processing, and also the overlap of send-
path and receive-path processing due to the asynchronous nature of
the remote I/O protocol interactions.

The authors of [28] present a method to reduce interrupts in
the NIC based on a constant-period polling scheme. The authors
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Figure 4: I/O Throughput for the FAKE(I+T) configuration.

Table 4: Initiator CPU utilization for the FAKE(I+T) configuration.
# threads 1 2 3 4
I/O size (KB) 64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512
R-CPU-I (%) 18.4 24.1 26.4 31.3 37.5 50.2 44.6 42.5 52.2 48.1 44.9 42.8 50.2 46.9 42.8 43.1
W-CPU-I (%) 18.4 24.1 26.4 31.3 51.1 74.1 76.6 65.1 82.3 72.1 71.9 66.7 82.6 78.7 71.6 68.5

Table 5: Summary of I/O throughput scores for various configurations.
configuration MB/s reference point
FAKE(I) 560 626 (one-way PCI-X transfers from memory)
FAKE(I+T) 550 560 (FAKE(I))
REMOTE(RAMDISK) 474 550 (FAKE(I+T))
REMOTE(8-SATA-RAID0) 290 474 (REMOTE(RAMDISK)),

450 (local RAID0)

in [10] presents an adaptive polling scheme that reduces the number
of interrupts in the NIC at high network loads. The polling period
is determined based on measurements of packet inter-arrival times.
Similarly, [22] presents a polling mechanism to be used at high
network loads instead of triggering an interrupt per packet arrival.
Each activation of the polling thread is assigned a packet quota for
fairness purposes. In our work, due to the statically-enforced batch-
ing of interrupts, by both initiator and target, not all of the incoming
messages are set to trigger an interrupt. Moreover, messages are set
to trigger interrupts in the NIC as defined by a remote I/O protocol
(rather than a “flat” stream of network packets), which enables us to
apply a polling scheme based on the idea of anticipating the arrival
of interrupt-triggering protocol messages while still in the initia-
tor’s send-path, after posting commands, or in the target’s receive
path, after posting completions.

Performance studies of sequential I/O workloads are presented
in [27, 8]. These studies include measurements throughout the I/O
data path, for a stand-alone I/O server. An important finding from
these studies is that although the sequential I/O throughput of disks
and controllers has been increasing, the performance bottleneck has
shifted to the system backplane (PCI bus for these studies), which
has not scaled up. In our work, we focus on a networked storage
system, and include in our study performance effects from the NIC
and its interaction with the storage subsystem.

6. CONCLUSIONS
Networked storage systems are a main trend in providing scal-

able, cost-effective storage. Such systems rely increasingly on com-
modity nodes equipped with multiple disks and interconnected with
commodity system area networks. Our previous work [19] has ex-

amined the overheads associated with remote block-level I/O. Our
platform uses a NIC that provides support for remote DMA op-
erations and a base I/O protocol stack that has already been opti-
mized for remote I/O. This work has shown that, although today
all hardware components in the I/O data-path are capable of high
throughput, commodity networked storage systems are not able to
fully deliver this level of performance to storage applications.

We present optimizations for reducing asynchronous event pro-
cessing overheads and for batching small requests dynamically at
the network layer in the I/O stack. Table 5 summarizes the through-
put levels achieved with the various configurations discussed in this
Section. For each configuration, this table also shows the corre-
sponding reference point. Our optimized protocol achieves about
474 MBytes/s in a remote ramdisk configuration, compared to the
320 MBytes/s of the base protocol. We then examine the remaining
bottlenecks in detail. We use our working prototype and a ramdisk
device to create “fake” protocol configurations that expose parts
of the protocol that are responsible for significant overheads. By
studying a remote ramdisk configuration, We find that up to the
point where the target has to generate I/O completions to be sent
back to the initiator (together with data blocks in the case of reads)
we can achieve about 474 MBytes/s. However, at this point the
I/O target’s CPU is saturated. Finally, we examine a configuration
with real disks, and we find that throughput increases from 200 to
290, by about 45%. In this configuration, the bottleneck for further
improving throughput is the single PCI-X bus at the target side.

Overall, we find that although commodity storage systems have
potential for building high-performance I/O subsystems, traditional
network and I/O protocols are not adequate. We show that re-
designing the I/O protocol layers around mitigating the effects of
small messages and asynchronous event processing on modern com-
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Figure 5: I/O Throughput for the local ramdisk configuration, as measured at the I/O target.
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Figure 6: I/O Throughput for the REMOTE(RAMDISK) configuration.

modity architectures and interconnects improves performance within
28% of the hardware limits. Finally, as CPU cycles are an im-
portant resource in application servers (initiators), we believe that
future work should concentrate on achieving similar levels of per-
formance but at lower CPU utilization.
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Figure 7: I/O Throughput for the 8-SATA-RAID0, locally-attached configuration.
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Figure 8: I/O Throughput for the REMOTE(8-SATA-RAID0) configuration.
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