
Pipelined Heap (Priority Queue)Managementfor AdvancedScheduling

in High-SpeedNetworks

AggelosIoannou
�

andManolisKatevenis
�

Instituteof ComputerScience(ICS),Foundationfor Research& Technology– Hellas(FORTH)
ScienceandTechnologyPark of Crete,P.O.Box1385,Heraklion,Crete,GR71110Greece

http://archvlsi.ics.forth.gr/muqpro/heapMgt.html , ioannou@ics.forth.gr, katevenis@ics.forth.gr
Tel: +30(81)391660,fax: 391661

Abstract – Quality-of-Service (QoS) guaranteesin networks
are increasinglybasedon per-flow queueingand sophisticated
scheduling. Most advanced scheduling algorithms rely on a
commoncomputational primiti ve: priority queues.Lar gepri-
ority queuesare built usingcalendarqueueor heapdata struc-
tur es. To support advanced scheduling at OC-192 (10 Gbps)
rates and above, pipelined managementof the priority queue
is needed. We present a pipelined heap manager that we
have designedas a core integratable into ASIC’s, in synthe-
sizableVerilog form. We discusshow to useit in switchesand
routers, its advantagesover calendar queues,and we present
cost-performance tradeoffs. Our designcan be configured to
any heapsize.Wehave verified and synthesizedour designand
presentcostand performanceanalysisinformation.

KEYWORDS: high speednetworkscheduling, weighted
round robin, weighted fair queueing, priority queue,
pipelinedhardwareheap,synthesizablecore.

I INTRODUCTION

Thespeedof networksis increasingat adramaticpace.Sig-
nificantadvancesalsooccurin network architecture,andin
particularin theprovision of quality of service(QoS)guar-
antees. Switchesand routersincreasinglyrely on special-
ized hardware to provide the desiredhigh throughputand
advancedQoS. Such supportinghardware becomesfeasi-
ble andeconomicalowing to theadvancesin semiconductor
technology. To beableto providetop-level QoSguarantees,
network switchesandroutersincreasinglyrely on per-flow
queueingandadvancedscheduling[14]. The topic of this
paperis hardwaresupportfor advancedscheduling.

Per-flow queueingreferstothearchitecturewherethepack-
etscontendingfor andawaiting transmissionona givenout-
put link arekeptin multiplequeues,thusproviding isolation
betweenflows. A schedulermust thenserve thesequeues
in an order that fairly allocatesthe available throughputto
theactiveflows. Commercialswitchesandrouterscurrently
have multiple queuesperoutput,but their numberis limited
(a few tens),sotheir schedulersarerelatively simple.When
morequeuesaredesired,thehardwarearchitecturehasto be
�

alsowith theDepartmentof ComputerScience,Universityof Crete,
Heraklion,Crete,Greece.

adaptedaccordingly. Managingmany thousandsof queuesat
highspeedis feasible,today, usingmodernVLSI technology
[13].

This paperdealswith the next problem: implementing
sophisticatedschedulingalgorithms at high speed,when
thereare many thousandsof contendingflows. SectionII
presentsan overview of variousadvancedschedulingalgo-
rithms. They all rely on a commoncomputationalprimitive
for their mosttime-consumingoperation:finding the mini-
mum(or maximum)amonga largenumberof values. Pre-
viouswork on implementingthis primitive at high speedis
reviewed in sectionII.C. However, for OC-192(10 Gbps)
andhigherrates,andfor packetsasshortasabout40 bytes,
evenhigheroperationrateis needed.To achievesuchhigher
rates,pipeliningmustbeused.

Thispaperpresentsapipelinedheapmanagerthatwehave
designedin the form of a core, integratableinto ASIC’s.
Pipeliningthe heapoperationsrequiressomemodifications
to the normal (software) heapalgorithms,as describedin
sectionIII. SectionIV presentscost-performancetradeoffs.
SectionV describesour implementation,which is in synthe-
sizableVerilog form. TheASIC corethatwe have designed
is configurableto any sizeof priority queue.A new opera-
tion canbeissuedin every clock cycle,exceptthataninsert
operationor anidle cycle is neededbetweentwo successive
deleteoperations.

II PRIORITY QUEUESFORADVANCED SCHEDULING

Many advancedschedulingalgorithmshave beenproposed;
goodoverviews appearin [17] and [12, chapter9]. Prior-
ities is a first, importantmechanism;usually a few levels
of priority suffice, so this mechanismis easyto implement.
Aggregation (hierarchicalscheduling)is a secondmecha-
nism: first chooseamonga numberof flow aggregates,then
chooseaflow within thegivenaggregate[1]. Somelevelsof
thehierarchycontainfew aggregates,while othersmaycon-
tain thousandsof flows; this paperconcernsthelatterlevels.
Thehardestschedulingdisciplinesarethosebelongingto the
weightedroundrobin family; we review these,next.



A TheWeightedRoundRobinFamily

With weightedroundrobinschedulingaschedulermustserve
the active flows in an order suchthat the servicereceived
by eachactive flow in any long enoughtime interval is in
proportionto a weight factorassociatedwith the flow. It is
not acceptableto visit the flows in plain roundrobin order,
servingeachin proportionto itsweight,becauseservicetimes
for heavy-weight flows would becomeclusteredtogether,
leadingto burstinessand large servicetime jitter. So, the
schedulerwill have to operateby keepingtrack of a "next
servicetime" numberfor eachactive flow. In eachstep,we
mustfind theminimumof thesenumbers,andthenincrement
it if theflow remainsactive,or deleteit if theflow becomes
inactive. Whenanew packetof aninactiveflow arrives,that
flow hasto bereinsertedinto theschedule.

Many schedulingalgorithmsbelongto thisfamily. Thisin-
cludesbothwork-conservingandnon-work-conservingdis-
ciplines. Otherimportantconstituentsof a schedulingalgo-
rithm suchasthemechanismfor updatingtheservicetimeof
a servedflow, or thatof a newly-active one,accountfor al-
gorithmvariantssuchasthevirtual clock algorithm,andthe
earliest-due-dateandrate-controlleddisciplines[12, ch.9].

B Priority QueueImplementations

All of the above schedulingalgorithmsrely on a common
computationalprimitive for their most time-consumingop-
eration:a priority queue, i.e. finding theminimum(or max-
imum) of a givensetof numbers.Priority queueswith only
a few tensof entriesor with priority numbersdrawn from a
smallmenuof allowablevaluesareeasyto implement,e.g.
usingcombinationalpriority encodercircuits. However, for
priority queueswith many thousandentriesandwith values
drawn from a large setof allowablenumbers,heapor cal-
endarqueuedatastructuresmustbe used. Otherheap-like
structures[7] areinterestingin softwarebutarenotadaptable
to highspeedhardwareimplementation.

L3

L2

L1

L4

L1 L2 L3 L4

125

55 32

57 56 37

81

30

12530 55 32 57 56 37 81

104

99

99 104

Figure1: Heappriority queue

Fig. 1 illustratesaheap.It is abinarytree(top),physically
storedin a linear array (bottom). Non-emptyentriesare

pushedall the way up and left. The entry in eachnodeis
smallerthantheentriesin itstwochildren(theheapproperty).
Insertionsare performedat the leftmost empty entry, and
thenpossiblyinterchangedwith theirancestorstore-establish
the heapproperty. The minimum entry is always at the
root; to deleteit, move the last filled entry to the root, and
possiblyinterchangeit with descendantsof it that may be
smaller. In theworstcase,a heapoperationtakesa number
of interchangesequalto thetreeheight.

A calendarqueue[3] is an arrayof buckets. Entriesare
placedin thebucket indicatedby a linearhashfunction. The
next minimum entry is found by searchingin the current
bucket, thensearchingfor thenext non-emptybucket. Cal-
endarqueueshave a goodaverageperformance,but in the
short-term,someoperationsmaybequiteexpensive.

C RelatedWork

For smallpriority queues(afew tensof entries)or for special
casessuchas plain round robin or round robin with only
a small setof weight factors,simpleimplementationswork
effectively [16] [11]. Priority queueswith up to hundredsof
entriesusingspecializedhardwarewerereportedin [10] [4];
however, they donotoutperformourpipelinedheapmanager,
while their costis higher.

For priority queueswith many thousandsof entries,calen-
dar queuesarea viable alternative. In high-speedswitches
androutersthe delayof resizingthe calendarqueue–asin
[3]– isusuallyunacceptable,soalargesizeischosenfromthe
beginning. However, the large sizecreateslong sequences
of empty buckets, thus requiring a mechanismto quickly
searchfor thenext non-emptybucket[8] [5]. No specificim-
plementationsof calendarqueuesat the performancerange
consideredin this paperhavebeenreportedin theliterature.
However it is hardto give to calendarqueuesadeterministic
responsetime like the one featuredby the pipelinedheap,
while their cost is higher, becauserehashingor linked lists
areneededto handlecollisions.Also, in orderto beefficient,
they usesignificantlymorememory, which is thedominant
costat largesizes.

Finally, concerningheapmanagementat high speed,we
hadstudiedhow fast it canbe performedusinga hardware
FSM managerwith the heapstoredin oneor two off-chip
SRAM’s [15]. In thepresentpaper, we look at higher-speed
heapmanagement,usingpipelining. As faraswe know, no-
bodyelsehadlookedat pipelinedheapmanagementbefore
this work, while a parallelandindependentstudyappeared
in [2]. In that paper, Bhagwan andLin introducea variant
of theconventionalheap,which they call P-heap.However
theP-heaphastwo disadvantagesrelativeto ourarchitecture.
First, theissuerateof insertoperationscannotexceedthatof
consecutivedeletes,while we achieve twicethis speed.Sec-
ond, the forest-of-heapsoptimization(sectionIII.B) is not



possible.Regardingpipelinestructure,Bhagwan& Lin use
asingleandlongclockcycle to fit all three basicoperations
(read-compare-write)neededateachtreelevel. Comparedto
our modelthatusesa shortclock cycle to fit only onebasic
operation,their design–which usesno pipeline bypasses–
would issueanew operationeverysix (6) shortcycles,com-
paredto 1 or 2 of our implementation.

III PIPELINING THE HEAP MANAGEMENT

SectionII showedwhyheapdatastructuresplayacentralrole
in the implementationof advancedschedulingalgorithms.
Whentheentriesof a largeheaparestoredin off-chip mem-
ory, or even with the top few levels of the heapin on-chip
memory, usingoff-chip memoryonly for thebottom(larger)
levels,thedesiretominimizepincostentailslittle parallelism
in accessingthem. For highestperformance,theentireheap
canbe on-chip,so asto useparallelismin accessingall its
levels,asdescribedin thissection.Suchhighestperformance
–up to 1 operationper clock cycle– will be needede.g. in
OC-192line cards. An OC-192input line cardmusthan-
dle an incoming10 Gbit/s streamplus an outgoing(to the
switching fabric) streamof 15 to 30 Gbit/s. At 40 Gbps,
for packetsasshortasabout40 bytes,thepacket rateis 125
M packets/s;eachpacket maygenerateoneheapoperation,
hencetheneedfor heapperformancein excessof 100M op-
erations/s.A wide spectrumof intermediatesolutionsexist
too,asdiscussedin sectionIV oncost-performancetradeoffs.

A HeapAlgorithmsfor Pipelining

Fig. 2 illustratesthebasicideasof pipelinedheapmanage-
ment. Eachlevel of theheapis storedin a separatephysical
memory, andmanagedby a dedicatedcontrollerstage.The
external world only interfacesto stage1. The operations
provided are i) insert a new entry into the heap(on packet
arrival,whentheflow becomesnon-idle);ii) deleteMin:read
anddeletethe minimum entry i.e. the root (on packet de-
parture,whenthe flow becomesidle); and iii) replaceMin:
replacetheminimumwith anew entrythathasahighervalue
(onpacketdeparture,whentheflow remainsnon-idle). When
a stageis requestedto performanoperation,it performsthe
operationon the appropriatenodeat its level, and then it
recursively asksthe level below to alsoperforman induced
operation. For levels 2 andbelow, the nodeindex, � , must
alsobe specified. Eachstageis thusableto processa new
operationassoonasit hascompletedthepreviousoperation
at its own level only.

Thereplaceoperationis theeasiestto understand.In Fig.
2, the given arg1 must replacethe root at level 1. Stage
1 readsits two childrenfrom L2, to determinewhich of the
threevaluesis thenew minimum,tobewrittenintoL1; if one
of the ex-childrenwas the minimum, the given arg1 must

Stage 4

Stage 3

Stage 2

Stage 1 L1

L2

L3

L4

ins/repl

ins/repl

ins/repl

ins/del/repl
op1 arg1

op2 arg2

op3 arg3

op4 arg4

i2

i3

i4

opcode to insert
new entry

deleted
min. entry

la
st

E
nt

ry

Figure2: Simplifiedblockdiagramof thepipeline

now replacethatchild, giving riseto a replaceoperationfor
stage2, andsoon.

The deleteoperationis similar to replace. The arg1 is
now eithertherightmostnon-emptyentryof thebottom-most
non-emptylevel (which is thendeleted),or, whenmultiple
operationsarein progressin variouspipelinestages,it comes
from theyoungest-in-progressinsert(whichis thenaborted).
The lastEntrybusis now usedto providearg1.

The traditional insert algorithmneedsto be modified[9]
[15]. Insteadof insertingthe new entry at the bottom,it is
insertedat theroot, in orderfor all theoperationsto proceed
top-to-bottom.Recursive repositioningsarethenperformed
to theproperof thetwosub-heaps.By properlysteering–left
or right sub-heap–this chainof insertionsat eachlevel, we
canensurethat the last insertionwill be guidedto occurat
preciselytheheapnodenext to thepreviously-lastentry.

Eachoperationon a node � , in eachstageof Fig. 2, takes
3 clock cycles: i) readfrom memory; ii) comparetwo or
threevaluesto find the minimum; iii) write this minimum
into the memory of this stage. Using such an execution
pattern,operationsripple down the pipeline at the rate of
one stageevery 3 clocks, allowing an operationinitiation
rate no higher than1 every 3 cycles. We can improve on
this rateby overlappingtheoperationof stages.In this way
anoperationcanstartworking on consecutive levels,before
the work to be doneon previous levels hascompleted.We
canthusendup with a ripple-down rateof onestageevery
cycle, requiringa readthroughputof 4 valuesper cycle in
eachmemory, plusanadditionalwrite throughputof 1 entry
per cycle. Cost-performancetradeoffs arefurther analyzed
in sectionIV.



B Managinga Forestof Multiple Heaps

In a systemthatemployeeshierarchicalscheduling(section
II), there are multiple sets(aggregates)of flows. At the
secondandlowerhierarchylevels,wewantto chooseaflow
within a givenaggregate.Whenpriority queuesareusedfor
this latter choice,we needa managerfor a forestof heaps
–oneheapper aggregate. Our pipelinedheapmanagercan
be conveniently usedto managesucha forest. Referring
to Fig. 2, it sufficesto storeall the heaps"in parallel", in
the memoriesL1, L2, L3, ..., and to provide an index ���
to the first stage(dashedlines), identifying which heapin
the forest the requestedoperationrefers to. Furthermore,
for a given maximumnumberof flows in the system,great
memorysavingscanbeachievedfor thelargememoriesnear
theleaves[6].

IV COST-PERFORMANCETRADEOFFS

A wide range of cost-performancetradeoffs exists for
pipelinedheapmanagers.The highestperformance(unless
one goesto superscalarorganizations)is for operationsto
ripple down the heapat one level per clock cycle, and for
new operationsto alsoenterthe heapat that rate. Analysis
howevershowedthatthisrequires2-portmemoryblocksthat
are4-entrywide, plus expensive global bypasses[6]. This
high-cost,high-performanceoptionappearsin line (i) of Ta-
ble 1. To have a concretenotionof memorywidth in mind,
in our exampleimplementation(sectionV) eachheapentry
is 32 bits wide. To avoid globalbypasses,which requireex-
pensivedatapathsandmayslow down theclockcycle,delete
(or replace)operationshave to consume2 cycleseachwhen
immediatelyfollowing oneanother, asnotedin line (ii) . In
many cases,thiswill beaninsignificantperformancepenalty,
becauseonecanoftenarrangefor oneor moreinsertionsto
beinterposedbetweendeletions,in whichcasetheissuerate
is still oneoperationperclockcycle.

Table1 : Alternativeswith on-chipSRAM

L COST 1

I SRAM ���	��

�
���������

N # Width Bypass ccper ccPer
E Ports (entr.) Paths DEL INS

i 2 4 global 1 1
ii 2 4 local 1 or 2 1
iii 1 4 local 2 2
iv 1 2 global 2 2
v 1 2 local 3 2
vi 1 1 local 4 2

To furtherreducecost,single-portmemoriescanbeused.
Thecorrespondingspeedcanbeseenat line (iii) andbelow.
If wegofurtheronandreducememorywidth,mainlyecono-
mizingonpowerconsumption,wecanhavetheperformance

of line (v). Line (iv) givesanalternativewith globalbypasses,
which however opposesto costreduction. Finally line (vi)
concernssingle-entry-widememories.

Anotheroption studied,was to placethe last oneor two
levels of the heap(the largestones)in a single (one port)
off-chip SRAM in order to economizein silicon area. We
consideroff-chipmemoriesof width1or2heapentries1. The
read-compare-writeloop for deleteoperationsnow becomes
longer. Thus,theissuerateis aspresentedin Table2.

Table2 : AlternativesWith Off-chip SRAM

L COST 1

I Off-Chip SRAM ���	��

�
���������

N Width Levels cc per cc Per
E (entries) contained DEL INS

i 2 1 5 2
ii 1 1 6 2
iii 2 2 5 4
iv 1 2 6 4

V IMPLEMENTATION

We have designeda pipelinedheapmanageras a core in-
tegratableinto ASIC’s, in synthesizableVerilog form. We
choseto implementtheversionappearingin line (ii) of table
1 (sectionIV). Replaceoperationsare not supported(but
canbeaddedeasily),becausethey areoftenimplementedas
split delete-inserttransactions,with somedelaybetweenthe
deleteandtheinsertoperations.

In order to verify our design,we wrote threemodelsof
a heap,of increasinglevel of abstraction,andwe simulated
themin parallelwith theVerilogdesign,sothateachhigher-
level modelcheckedthecorrectnessof thenext level, down
to theactualdesign.We haveverifiedthedesignwith many
differentoperationsequences,activatingall existing bypass
paths.Testpatternsof tensof thousandsof operationswere
used,in order to test all levels of the heap,also reaching
saturationconditions.

In anexampleimplementationthatwe have written, each
heapentry consistsof an 18-bit priority valueanda 14-bit
flow identifier, for a total of 32 bits perentry. Eachpipeline
stagestoresthe entriesof its heaplevel in four 32-bit two-
port SRAM blocks. We have processedthe designthrough
Synopsystogetareaandperformanceinformation. Fora16K
entryheap,thelargestSRAMblocksare��������� . Mostof the
areafor thedesignis consumedby theunavoidableon-chip
memory. Thedatapathandcontrolof one(general)pipeline
stagehave a complexity of about5.5K gates2 plus 500bits

1We assumedzero-bus-turnaround (ZBT – IDT trademark; see
http://www.micron.com/mti/msp/html/zbtds.html)off-chip memory, which
operateswith thesameclock astherestof theheap

2simple2-inputNAND/NOR gates



of flip-flops/registers.For our exampleimplementation,the
resultingcomplexity is about80K gates,7K registerbits,and
0.5M memorybits. The approximateareaconsumed,for a
0.18-micronCMOSASIC library, is 14.5 ���! in total,with
4.3 ���! concerningdatapath.

Theclock frequency is approximately180MHzfor a heap
of 16K entries,in a conservative 0.18-microntechnology.
Using more efficient technologythan the low-power-low-
speedone we used,we estimatethat the clock frequency
wouldreach250to300MHz.With aclockspeedof 200MHz,
this heapprovidesa throughputof 200MegaOperationsper
Second(Mops)(100Mopsfor consecutivedeleteoperations
with no interposedinsertions).Evenfor packetsassmallas
40bytes,200Mopstranslatesto arateof about64Gbps.For
moreinformationon our implementationsee[6].

CONCLUSIONS : We have designeda pipelinedheapman-
ager, thus demonstratingthe feasibility of large priority
queueswith throughputratesabove 100 million operations
per second,at reasonablecost. The feasibility of priority
queueswith many thousandsof entriesin this throughput
rangehas important implications for high speednetworks
and the future internet. Many sophisticatedalgorithmsfor
providing top-levelquality-of-serviceguaranteesrelyonper-
flow queueingandpriority-queue-basedschedulers.Thus,
we have demonstratedthefeasibility of thesealgorithms,at
reasonablecost,at OC-192(10 Gbps)andhigherrates.

ACKNOWLEDGMENTS : We would like to thank all those
whohelpedus,andin particularGeorgeKornarosandDioni-
siosPnevmatikatos.WealsothankEuropracticeandtheUni-
versityof Cretefor providing many of theCAD toolsused,
andtheGreekGeneralSecretariatfor Research& Technol-
ogy for thefundingprovided.

REFERENCES

[1] J.Bennett,H. Zhang:"Hierarchicalpacket fair queueingalgo-
rithms", IEEE/ACM Trans.on Networking, vol. 5, no. 5, Oct.
1997,pp.675-689.

[2] R.Bhagwan,B. Lin: "Fastandscalablepriority queuearchitec-
turefor high-speednetworkswitches"IEEEInfocom2000Con-
ference, 26-30March2000,Tel Aviv, Israel;http://www.ieee-
infocom.org/2000/papers/565.ps

[3] R. Brown: "CalendarQueues:a fastO(1) priority queueim-
plementationfor thesimulationeventsetproblem",Commun.
of theACM, vol. 31,no.10,Oct.1988,pp.1220-1227.

[4] H. J. Chao: "A novel architecturefor queuemanagementin
the ATM network", IEEE Journal on Sel.Areasin Commun.
(JSAC), vol. 9, no.7, Sep.1991,pp.1110-1118.

[5] H. J. Chao,Y. Jeng,X. Guo,C. Lam: "Designof packet-fair
queueingschedulersusing a RAM-basedsearchingengine",

IEEE Journal on Sel.Areasin Commun.(JSAC), vol. 17, no.
6, June1999,pp.1105-1126.

[6] A. Ioannou: “An ASIC Core for PipelinedHeap Manage-
mentto SupportSchedulingin High SpeedNetworks”, Mas-
ter of ScienceThesis,University of Crete, Greece;Techni-
cal Report FORTH-ICS/TR-278,Institute of ComputerSci-
ence, FORTH, Heraklio, Crete, Greece, November 2000;
http://archvlsi.ics.forth.gr/muqpro/heapMgt.html

[7] D. Jones: "An empirical comparisonof priority-queueand
event-setimplementations",Commun.of theACM,vol. 29,no.
4, Apr. 1986,pp.300-311.

[8] M. Katevenis: "Fastswitching and fair control of congested
flow in broad-bandnetworks", IEEE Journal on Sel.Areasin
Commun.(JSAC), vol. 5, no.8, Oct.1987,pp.1315-1326.

[9] M. Katevenis,lectureson heapmanagement,Fall 1997.

[10] M. Katevenis,S. Sidiropoulos,C. Courcoubetis:"Weighted
round-robincellmultiplexing in ageneral-purposeATM switch
chip", IEEEJournalon Sel.Areasin Commun.(JSAC), vol. 9,
no.8, Oct.1991,pp.1265-1279.

[11] M. Katevenis, D. Serpanos,E. Markatos: “Multi-queue
managementand scheduling for improved QoS in com-
munication networks”, Proceedingsof EMMSEC’97 (Eu-
ropean Multimedia Microprocessor Systems and Elec-
tronic CommerceConference),Florence, Italy, Nov. 1997,
pp. 906-913; http://archvlsi.ics.forth.gr/htmlpapers/EMM-
SEC97/paper.html

[12] S. Keshav: "An engineeringapproachto computernetwork-
ing", AddisonWesley, 1997,ISBN 0-201-63442-2.

[13] A. Nikologiannis,M. Katevenis: “Efficient Per-Flow Queue-
ing in DRAM at OC-192 Line Rate using Out-of-Order
Execution Techniques”, Proc. IEEE Int. Conf. on Com-
munications (ICC’2001), Helsinki, Finland, June 2001;
http://archvlsi.ics.forth.gr/muqpro/queueMgt.html

[14] V. Kumar, T. Lakshman,D. Stiliadis: "Beyond besteffort:
Routerarchitecturesfor the differentiatedservicesof tomor-
row’s internet",IEEE CommunicationsMagazine, May 1998,
pp.152-164.

[15] I. Mavroidis: "Heap management in hard-
ware", Technical Report FORTH-ICS/TR-222, In-
stitute of Computer Science, FORTH, Crete, GR;
http://archvlsi.ics.forth.gr/muqpro/heapMgt.html

[16] D. Stephens,J. Bennett,H. Zhang: "Implementingschedul-
ing algorithms in high-speednetworks", IEEE Journal on
Sel. Areas in Commun.(JSAC), vol. 17, no. 6, June1999,
pp. 1145-1158.http://www.cs.cmu.edu/People/hzhang/publi-
cations.html

[17] H. Zhang:"Servicedisciplinesfor guaranteedperformancein
packet switchingnetworks",Proceedingsof theIEEE,vol. 83,
no.10,Oct.1995,pp.1374-1396.


