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Abstract

Peer-to-peer computing and networking, an emerging
model of communication and computation, has recently
started to gain significant acceptance. This model not only
enables clients to take a more active role in the information
dissemination process, but also may significantly increase
the performance and reliability of the overall system, by
eliminating the traditional notion of the “server” which
could be a single point of failure, and a potential bottleneck.

Although peer-to-peer systems enjoy significant and con-
tinually increasing popularity, we still do not have a clear
understanding of the magnitude, the traffic patterns, and the
potential performance bottlenecks of the recent peer-to-peer
networks.

In this paper we study the traffic patterns of Gnutella,
a popular large-scale peer-to-peer system, and show that
traffic patterns are very bursty even over several time scales.
We especially focus on the types of the queries submitted
by Gnutella peers, and their associated replies. We show
that the queries submitted exhibit significant amounts of
locality, that is, queries tend to be frequently and repeatedly
submitted. To capitalize on this locality, we propose simple
Gnutella caching mechanisms that cache query responses.
Using trace-driven simulation we evaluate the effectiveness
of Gnutella caching and show that it improves performance
by as much as a factor of two.

1 Introduction

Recently, a new model of communication and compu-
tation, called peer-to-peer networking, has started to gain
significant acceptance [3]. Contrary to the traditional client-
server model, peer-to-peer computing enables all clients to
act as servers and all servers to act as clients. In this way,

clients not only take a more active role in the information dis-
semination process, but also may significantly increase the
performance and reliability of the overall system, by elim-
inating the traditional notion of the “server” which could
be a single point of failure, and a bottleneck in the overall
system.

The first and most widely-known peer-to-peer system,
Napster, 1 is a file sharing utility that has enabled hun-
dreds of thousands of users to efficiently share files, includ-
ing mp3-encoded songs, over the Internet. Capitalizing on
the success of Napster, several other peer-to-peer file shar-
ing systems have been recently developed. These include
Gnutella, KaZaA, AudioGalaxy, etc. Although the techni-
cal details of these systems vary significantly, they all share
the peer-to-peer philosophy by enabling all peers to store
and deliver content to other peers. Besides file sharing,
peer-to-peer systems have also been used for the efficient
execution of highly parallel and distributed applications by
capitalizing on the availability of idle cycles in home com-
puters. Such applications range from systems that search
for extra-terrestrial intelligence [7], to systems that seek a
cure for AIDS [5].

Although peer-to-peer systems appeared only recently,
their popularity has increased rapidly in the last couple of
years. For example, network traffic measurements at the
University of Wisconsin suggest that in the period of April
2000, Napster-related traffic represented the 23% of their to-
tal network traffic, while at the same time web-related traffic
accounted for only 20% [12, 13]. Although Napster traffic
has been reduced recently, the percentage of peer-to-peer
traffic (in total) has actually increased. For example, recent
measurement from the University of Wisconsin suggest that,
in October 2001, peer-to-peer traffic reached more than 30%
of the total traffic2, while at the same time, web-related traf-

1http://www.napster.com
2http://wwwstats.net.wisc.edu/



fic was a little more than 19%.
Although these measurements suggest that the traffic de-

mands of peer-to-peer systems represent a significant and
continually increasing percentage of the overall network
traffic, we still do not have a clear understanding of the mag-
nitude, the traffic patterns, and the potential performance
bottlenecks of such peer-to-peer networks.

In this paper we study the traffic patterns of Gnutella,
a popular large-scale peer-to-peer system. We especially
focus on the types of the queries submitted by Gnutella
peers, and their associated replies. We identify the locality
patterns that exist in Gnutella queries and propose simple,
but effective caching mechanisms to exploit them.

More accurately, the contributions of this paper are:

� We installed three Gnutella clients, in two different
continents and concurrently gathered traffic traces of
Gnutella queries. We studied the traffic incurred by
Gnutella query requests and query responses and found
that this traffic is bursty and continues to remain bursty
over several time scales.

� We studied the Gnutella query traces and showed that
they show a significant amount of temporal locality,
that is, several Gnutella queries were submitted more
than once throughout the duration of our tracing study.
Actually, the average Gnutella query was submitted
between 2.5 and 5 times.

� We proposed and studied a simple caching policy that
caches Gnutella query results for a limited amount of
time. Our trace-driven simulation results show that
even such a simple policy can significantly reduce the
network traffic generated by Gnutella client,by as much
as factor of two, while needing a very small amount of
main memory.

The rest of the paper is organized as follows: Section
2 presents the methodology used to gather Gnutella traces.
Section 3 compares our approach with previous work and
places our paper in the appropriate context. Section 4
presents the traffic characteristics of the Gnutella network.
Section 5 presents and evaluates our caching approach. Fi-
nally section 6 concludes the paper.

2 Methodology

2.1 The Gnutella Architecture

Gnutella is an overlay network superimposed on top of
the Internet. Gnutella peers connect with their neighbors
using point-to-point connections. In order to locate a file, a
peer sends a query request to all its neighbors,which forward
the query to their neighbors (as shown in figure 1 (a)), and so
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Figure 1. Query Requests (a) and Responses (b).

on. When a peer receives a query request, it searches its local
files for a match to the query and returns a query response
containing the matches it found (as shown in figure 1 (b)).
Query responses follow exactly the reverse path of query
requests. To avoid query requests from flooding the network,
each query has a TTL (time to live) field, which is usually
initialized at 7. When a node receives a query request with a
positive TTL, it decrements the TTL field before forwarding
the query. Queries received with a TTL equal to one are not
forwarded. Therefore, queries may not travel more than
seven hops in the network, and thus, the Gnutella network is
free from never-ending queries. Although a Gnutella query
can not circle the Gnutella network forever, it is possible to
visit the same node more than once within the seven hops
of its “life”. To make sure that each node does not serve
the same query twice, each query request is identified by an
(almost) unique identification called guid. When a node
receives a query with a guid it has encountered in the past,
it simply drops the query.

2.2 Network Monitors

In order to monitor the Gnutella network and gather trace
information, we made modifications to gnut, a UNIX-
based open-source client for Gnutella 3.

We installed three gnut tracing probes: one in Greece
(Crete), one in Norway (Bergen), and one in USA
(Rochester, NY). We started the three tracing tools simul-
taneously on Thursday Oct. 4, 10 am EST. The tracing
lasted for about one hour. Each probe recorded the queries
and replies received. From the received queries, each probe
removed the duplicates, that is, the queries with the same
guid that have already been seen and forwarded in the past.

3 Previous Work

The study of large-scale peer-to-peer systems in general,
and Gnutella in particular, is a rather new topic.

3http://www.gnutelliums.com/linux unix/gnut/



Adar and Huberman studied the Gnutella traffic for a 24-
hour period [1]. They found that close to 70% of the users
shared no files, and that 50% of all responses were returned
by only 1% of the hosts. Their findings were independently
confirmed by Saroiu et al. who found that “there is signif-
icant heterogeneity and lack of cooperation across peers”
participating in Gnutella [15]. Saroiu et al. findings sug-
gests that a small percentage of the peers appeared to have
“server-like” characteristics: they were well-connected in
the network and they served a significant number of files.
This disparity between the peers’ characteristics may signifi-
cantly limit the scalability, reliability and performance of the
Gnutella network, and of peer-to-peer systems in general.

Anderson [2] observed the traffic of Gnutella for a 35-
hour period and reported several results, including the distri-
bution of TTL values, the distribution of Hops for Queries,
the distribution of Hops for all Packets, etc.

Ripeanu et al., studied the topology of the Gnutella net-
work [14] over a period of several months, and found several
interesting properties. Among them is that the Gnutella net-
work topology does not match well the underlying Internet
topology leading to the inefficient use of the network band-
width.

Jovanovic [6] studied several Gnutella connection graphs
and identified significant performance problems, including
short-circuiting, an effect that limits the reachability of the
nodes in a Gnutella network. Jovanovic’s experiments sug-
gest that, due to short-circuiting, a typical Gnutella peer
reaches only about 50% of the peers that it could typically
reach.

Sripanidkulchai [16] studied Gnutella traffic and, much
like this paper, proposed the use of caching to improve per-
formance. There exist however, several differences between
our work and that of Sripanidkulchai. First, we collect
Gnutella traces simultaneously from three different points
on the Globe in order to make sure that our approach is
not specific to one geographic region. Second, our def-
inition of caching is fundamentally different from that in
Sripanidkulchai . For example, Sripanidkulchai [16] caches
query results independently from the node that made the
query, which, in return, may result in delivering incomplete
query responses. Furthermore, our performance metrics
completely differ from that used in [16]. While Sripanid-
kulchai [16] uses the traditional performance metric of “hit
rate”, we show that in Gnutella query result caching, “hit
rate” is not well defined and alternative performance metrics
need to be considered.

Gnutella query caching, can be viewed as an extension
of web document caching [17] and of search engine query
caching [11, 9]. However, Gnutella query caching has sig-
nificant differences from previous caching approaches in-
cluding (i) different temporal locality characteristics, (ii)
different performance benefits, and (iii) different staleness
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Figure 2. Queries per second.

properties. For example, a search engine’s query result can
safely be cached for several hours (if not for days). On
the contrary, Gnutella query results may easily become stale
within a few minutes.

4 Measurements

4.1 Gnutella Traffic Characteristics

4.1.1 Gnutella Query Requests

In our first experiment we report the number of the Gnutella
query requests observed by each client. Table 1 shows the
average number of queries received per second for each
of the three clients. We immediately notice that all clients
received a similar amount of query requests ranging between



Host Query Requests/sec (avg.)
Rochester 45.9

Crete 47.9
Norway 52.3

Table 1. Queries per second - Overall average.

Host Responses per sec (avg.)
Rochester 32.2

Crete 44.2
Norway 26.9

Table 2. Query Responses per second - Overall
average.

46 and 52 requests per second. It is interesting to note that
the geographic location of a client did not seem to have
a direct effect on the number of queries it receives. For
example, the US-based client (in Rochester) received less
query requests per second than the client in Southern Europe
(Crete). This is probably due to the time difference between
Europe and the States, and/or because the topology of the
Gnutella network does not necessarily follow that of the
underlying geographical network, and therefore, clients that
are geographically away from the United States may still
receive a large amount of traffic. Figure 2 shows the actual
number of queries received per second by each one of our
three clients as a function of time. We immediately see that
the load of each client varies very rapidly with time. For
example, the query requests per second received by the client
in Norway were between 1 and 585. That is, the client’s load
varied by as much as three orders of magnitude. Similarly,
the load of the other clients as well varied 2-3 orders of
magnitude.

To see if this burstiness of traffic holds over several time
scales we plot the number of queries submitted per time
interval (as a function of the time interval). 4 We use intervals
of one second, 10 seconds, 1 minute, and 5 minutes. Figure
3 shows that for small intervals, (one and ten seconds) the
traffic is very bursty and varies by as much as 2-3 orders
of magnitude. The traffic remains bursty even for larger
intervals (one minute and five minutes long), although the
burstiness does not exceed one order of magnitude.

4.1.2 Gnutella Query Responses

In our next experiment we investigate what are the traffic
patterns that result from responses to Gnutella queries. Table

4In the interest of space we show the results only for the client in
Norway. The results for the other clients are similar.

probe location TTL � 0 TTL � 1
Crete 2.9% 10.33%

Rochester 3.2% 11.51%
Norway 3.4% 12.02%

Table 3. Percentage of Queries that had at least
one hit.

2 shows the average number of responses per second that
were observed by each of our clients. We see that the client in
Crete received more than 44 responses per second, the client
in Rochester received 32 responses per second,and the client
in Norway received 27 responses per second. Figure 4 plots
the actual number of responses seen per second by each one
of the clients. We immediately see that the traffic due to
responses is very bursty. For example, there were times
where the clients received more than 1,000 query responses
within one second. These were responses to queries that
matched a lot of files. For example, one of the most popular
queries we encountered in our measurements was the query
“game” that matched more than 7,000 files,including several
computer games, as well as songs and images that happened
to have the work “game” in their titles. 5

Although some queries produce a large number of re-
sponses, most queries produce no responses at all. Table 3
(second column labeled “TTL � 0”) shows the percentage of
queries that produced at least one response (at least one hit).
We see that this percentage is between 2.9% and 3.4% for
all our clients. These low percentages is probably due to
the fact that the clients we installed for measuring Gnutella
traffic share no files, and therefore could not generate a reply
to any query. Thus, all query requests that terminate in our
clients (i.e. have a TTL equal to one), are not forwarded
to their neighbors and do not generate any responses. To
factor out the effects of our clients, we measured the number
of responses as a percentage of the queries that had a TTL
greater than one. Queries with TTL greater than one were
not terminated by our clients - they were forwarded to other
clients. Therefore, we removed the queries with TTL equal
to one from our calculations and measured the responses to
queries that had TTL greater than one. The resulting per-
centage is shown in the third column of table 3. We see
that only 10%-12% from the queries (with TTL greater than
one) had any responses. Even though this percentage is
higher than the one measured over all queries, it is still very
low: roughly speaking, nine out of ten queries generate no
response.

To see if the burstiness of Query responses holds over
several time scales, we plot the number of query responses

5Interestingly enough, the query matched even some misspelled song
titles, like “Theme-Games Bond 007-Golden Eye.mp3”.
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Figure 3. Query Requests per time interval.
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Figure 5. Query Responses per time interval.

received per time interval (as a function of the time interval)
in figure 5. 6 We use intervals of one second, 10 seconds, 1
minute, and 5 minutes. We see that for small intervals, (one
and ten seconds) the traffic is very bursty and varies by as
much as 2-3 orders of magnitude. However, we see that the
traffic remains bursty even for larger intervals (one-minute
and five-minute intervals). Similar observations about the
burstiness of Internet traffic have been reported before for
the Internet and the web [4, 8].

4.1.3 TTLs: life of queries

In our next experiment we measure the distribution of TTLs
of the various queries. Figure 6 plots the number of queries
that had a TTL between one and seven. 7 We see that the
number of queries decreases exponentially with increasing
TTL. For example, the client in Crete sees 115 queries with
TTL equal to seven, 459 queries (4 times more) with TTL
equal to six, 915 queries (8 times more) with TTL equal to
five, 3460 queries (30 times more) with TTL equal to four,
10129 queries (88 times more) with TTL equal to three,
36087 queries (313 times more) with TTL equal to two, and
137927 queries (1200 times more) with TTL equal to one.

6Due to space limitations we again show the results only for the client
in Norway. The results for the other clients are similar.

7Queries with TTLs lower than one are probably the result of erroneous
clients. Queries with TTLs larger than 7 will generate excessive amounts
of traffic and are usually not forwarded by Gnutella clients.

We see that in all cases the number of queries with TTL equal�
is 2-4 times larger than the number of queries with TTL

equal to
���	�

. This “exponential” behavior is probably due to
the broadcast approach followed by the Gnutella protocol:
each Gnutella peer forwards each query to its neighbors,
which in turn forward the query to their neighbors, and
so on. Therefore, the number of Gnutella query messages
increases (roughly) exponentially as the query is propagated
in the network. Recall, that each time a query request is
forwarded, its TTL is decremented by one. Therefore, query
requests with small TTLs are exponentially more than query
requests with large TTLs. To illustrate this point, figure 7
shows an example of a Gnutella network and the distribution
of the TTLs. We see that the root node receives a query
with TTL equal to 5, which by forwarding the query to its
neighbors generates two queries with TTL equal to 4. These
neighbors forward the query one more hop generating 4
queries with TTL equal to 3, and eventually 8 queries with
TTL equal to 2. We see therefore that as a query propagates
in the Gnutella network, it generates an exponential number
of queries which have a TTL that decreases linearly with the
number of hops.

4.2 Locality

Our experiments so far have investigated the traffic pat-
terns of the Gnutella query requests and their associated
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responses. We have already established that both query re-
quests and query responses exhibit a very high degree of
burstiness. We will now turn our attention into any locality
patterns that may exist in Gnutella queries.

Table 4 shows the average number of times each query has
been observed by our probes. The second column (labeled
“TTL � 0”) shows the average for all queries, and the third
column shows the average for queries that have TTL greater
than one. The latter are queries that are forwarded to other
clients. We see that the average number of submissions
of each query is between 4.5 and 5 (over all queries), and
between 2.6 and 3 (for queries with TTL greater than one).
Figure 8 shows the percentage of queries that were submitted
only once, the percentage of queries submitted twice, and
so on. We see that in all cases, 60% of the queries were
submitted only once, and therefore about 40% of the queries
were submitted more than once. Actually, about 10% of

probe location TTL � 0 TTL � 1
Crete 4.5 2.74

Rochester 4.5 2.57
Norway 4.9 2.98

Table 4. Average number of times each query is
submitted.

the queries were submitted twice, 5% of the queries were
submitted three times, and so on. It is interesting to see that
these percentages are almost identical for all clients.

5 Query Caching

Table 4 has already established that Gnutella query re-
quests exhibit a significant amount of locality. In our next
experiments we explore whether this locality can be ex-
ploited in order to reduce the overall network traffic. Local-
ity is usually exploited (among other ways) by caching of
the frequently accessed data. For example, web-caching and
content delivery systems store copies of frequently-accessed
data in proxies (caches) located close to the clients that re-
quest them [17].

However, caching query results in peer-to-peer systems,
like Gnutella, is significantly different from caching (query
results or other documents) in web caching systems. The
main difference between Gnutella caching and web caching
is that in traditional web caching, the “content”, that is
cached by proxies, is provided by well-defined web servers.
On the contrary, in Gnutella, the “content” (which is actually
the sum of the responses to a query request) is not provided
by any well-defined single server, but is computed by com-
posing the results of the content provided by several peers.
Therefore, besides the peer that originally issued the query,
no other peer has complete knowledge of the “content” of a
query’s response.
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Figure 9. Query Caching and Coverage of Re-
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Let us illustrate the difference between web caching and
peer-to-peer caching by an example shown in Figure 9: sup-
pose that a Gnutella peer � receives a query request (e.g.
“cnn”) from its neighbor 
�� with TTL equal to ��� . �
forwards the query to neighbors 
�� and 
�� , and receives
the query’s responses which it later forwards to 
 � . The
responses that � has collected represent all the files that
matched “cnn”, and are reachable within � � hops from �
through its neighbors 
�� and 
�� . Suppose now, that at
some later point in time, � receives the same query request
(“cnn”) from neighbor 
�� with TTL equal to ��� . In this
case, � can not just give to 
�� the results of 
 � ’s query re-
quest, because they do not include the files that match “cnn”
that are reachable through 
�� . Furthermore, since the TTL’s
of the two queries are different, the responses to each query
correspond to a different coverage of the Gnutella network.
Therefore, � can not just use the response of the 
�� ’s query
to satisfy 
�� ’s query, even though the two query requests
textually match each other. Thus, although a Gnutella peer

may see a query request several times, these requests do
not necessarily produce the same results, especially if they
originate from different neighbors and have different TTLs.
Therefore, Gnutella caching systems need to take into ac-
count not only the text of the query request but also the
query’s TTL, the neighbor that issued the request, and in
general, all the factors that define the coverage of a query’s
response.

Although Gnutella Caching is different from web
caching, it can still be employed in order to improve per-
formance. Our proposed approach to Gnutella caching is
as follows: When a client � receives a query from neigh-
bor 
�� , its checks its cache to see if a query with the same
text and the same TTL has been seen in the past. If such a
query if found, and if this query has been sent in the past by
neighbor 
�� , � returns the responses that exist in its cache
for this query. If, on the other hand, � finds such a query in
its cache, but the (cached) query had been sent by neighbor

 � , � forwards the (new) query to 
 � , receives the results,
combines them with the locally cached results of the query,
and forwards the combined result to 
 � . 8

5.1 Cache Design

5.1.1 Cache Size

Traditional caching systems reserve a predefined amount
of space for their cache and store in it as much useful
data as they can. To make the best possible use of their
limited-size cache, some web caching systems, give pref-
erence to small documents in order to fill the cache with
as many documents as possible [10]. However, we be-
lieve that Gnutella caching should behave differently from
other forms of caching, mainly due to the fact the Gnutella
query responses are time-sensitive. The Gnutella network is
highly dynamic: Gnutella peers join and leave the network
very frequently. Therefore, the responses to a given query

8Note that before � can forward the list with the combined results to���
, it must first remove the cached results received by

���
in the past.



request may become out-of-date even after a small time pe-
riod. Thus, if query responses in Gnutella are cached, they
should be kept in the cache for only a small amount of time,
that ranges from several seconds to at most a few minutes.
Therefore, contrary to traditional methods of caching, the
objective of Gnutella caching is not to keep a limited-size
cache as full as possible, but to keep the data in the cache for
a time period that is long enough to improve performance,
but also short enough to avoid sending stale responses.

5.1.2 Evaluating Gnutella Query Caching

Traditionally, the performance metric that has been used
to evaluate caching approaches is the (cache) hit rate. The
cache hit rate is the percentage of requests that were actually
found in the cache over the measured period of time. As
we have already explained, although some Gnutella queries
may find their entire set of responses in the cache, other
queries may find only a portion of their responses in the
cache. Although the first type of queries can be clearly
categorized as cache hits, the second type of queries can
be treated neither as cache hits, nor as cache misses. Even
though the queries of the second type can not be clearly
characterized as hits or misses, they can definitely participate
in a caching system and improve performance by retrieving a
potentially large portion of their responses from the Gnutella
cache. These queries can help to reduce the overall network
traffic, since Gnutella cache systems forward them to only
to one neighbor, instead of all the neighbors. Therefore,
to evaluate the effectiveness of Gnutella query caching we
will not measure the “hit rate”, but we will measure the
network traffic reduction that is achieved by caching, or
more precisely, the percentage reduction in the number of
the query requests sent out in the network.

5.2 Network Traffic Reduction

We have designed and build a trace-driven simulator that
takes as input the produced Gnutella query traces, simu-
lates the caching approach we proposed, and measures the
performance improvement of the overall system.

Figure 10 plots the reduction of the query request packets
sent out in the network as a function of the caching interval.
We see that caching query results even for as low as one
minute reduces query request packets by as much as 15%-
20%. Caching for 5 minutes results in a 30% reduction.
Caching for half-an-hour results in close to 50% network
traffic reduction. Effectively, caching query results for 30
minutes reduces the number of query requests by half. Our
results agree with the query popularity patterns observed in
table 4. For example, table 4 suggests that each query (with
TTL > 1) is submitted on the average close to 2.5 times.
Therefore, an ideal caching algorithm (that would cache
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Figure 10. Reduction of Query Request packets
sent out in the network.
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Figure 11. Cache Size needed.

queries indefinitely, and that would not take into account the
sender of the query) could achieve a “hit rate” and an associ-
ated query request packets reduction of about 1.5/2.5=60%.
Our simulations suggest that by using our less-than-ideal
caching approach and by caching Gnutella query response
for half an hour results in a query request packets reduction
close to 50%, which is close to the “ideal” 60%.

5.3 Cache Size Requirements

Although caching reduces network traffic significantly,
it requires that each peer contributes an amount of its local
memory to store the cached query responses. If the size
of this local memory (hereafter called the cache size) turns
out to be large, it can be a limiting factor to the deployment
of caching. This cache size includes the memory needed
to store the query responses themselves, as well as all the
metadata need to organize these responses into appropriate
and efficient data structures. The reader may notice that
this cache size may vary with time, because the proposed



Gnutella caching approach keeps the responses of only the
last given time interval, and as shown in figure 4 the number
of these responses may vary. Therefore, during a busy time
interval, the cache size will be larger than it would be during
a low-traffic time interval. To smooth these fluctuations, our
results report the average amount of memory needed for the
duration of the simulation. Figure 11 plots the average cache
size as a function of the caching interval. We immediately
see that the memory demands are very low. For example,
caching query responses (and their associated metadata) for
one minute required only 200 KBytes. Caching query re-
sponses for as long as five minutes required no more than 1
MByte of memory. Even caching for as long as 20 minutes
required no more than 3 MBytes of memory. Therefore, the
memory needs of Gnutella caching can be considered rather
small. Most (if not all) Gnutella peers can easily invest a
few hundred KBytes (or at most a few MBytes) of their
memory in order to improve performance, and reduce the
overall network traffic.

6 Conclusions

In this paper we studied the traffic of Gnutella, a large
peer-to-peer application. We installed three Gnutella clients
in three countries in two different continents. We identified
the locality patterns that exist in Gnutella query requests,
and proposed a simple caching policy that caches query
responses for a short amount of time. Using trace-driven
simulation we studied the performance of this policy. Based
on our measurements and experimental evaluation we con-
clude:

� Peer-to-peer Systems like Gnutella have a very bursty
traffic pattern. Both query requests and responses have
very bursty traffic patterns even when observed over
several time scales.

� Queries submitted to Gnutella show a significant
amount of locality. Our measurements suggest that
the average query has been submitted 2-5 times within
a one-hour period.

� Caching Gnutella queries even for a small amount
of time may result in significant performance im-
provements. Our trace-driven simulations suggest that
caching Gnutella query responses for several minutes
may reduce the query requests sent out in the network
by as much as a factor of two.

� Caching Gnutella queries requires only a small amount
of memory. Our experiments suggest that Gnutella
query caching in most cases required no more than 1-3
MBytes of memory.

Overall, we believe that peer-to-peer caching systems
are beneficial today and will be increasingly important in
the near future when an even larger number of will join
peer-to-peer networks.

Acknowledgments

This paper was supported in part by IST project SCAMPI
(IST-2001-32404) funded by the European Union. We thank
the staff of the University of Rochester and the University
of Bergen for their help in gathering the traces. We would
like to thank Catherine Chronaki and Elias Athanasopolous
for their constructive comments.

References

[1] E. Adar and B. Huberman. Free riding on gnutella. First
Monday, 5(10), 2000.

[2] K. Anderson. Analysis of the traffic on
the gnutella network, 2001. http://www-
cse.ucsd.edu/classes/wi01/cse222/projects/reports/p2p-
2.pdf.

[3] D. Clark. Face-to-face with peer-to-peer networking. Com-
puter, 34(1):18–21, Jan. 2001.

[4] M. Crovella and A. Bestavros. Self-similarity in world
wide web traffic: Evidence and possible causes. IEEE/ACM
Transactions. Networking, 5(6):835–846, 1997.

[5] FightAIDS@home. http://www.fightaidsathome.org/.
[6] M. Jovanovic. Modeling lareg-scale peer-to-peer networks

and a case study of gnutella. Master’s thesis, University of
Cincinnati, 2001.

[7] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and
M. Lebofsky. Seti@home-massively distributed computing
for seti. Computing in Science & Enginering, 3(1):78–83,
2001.

[8] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the
self-similar nature of ethernet traffic. IEEE/ACM Transac-
tions on Networking, 2(1):1–15, 1994.

[9] Q. Luo, , and J. F. Naughton. Form-based proxy caching
for database-backed web sites. In Proceedings of the VLDB
2001, 2001.

[10] E. Markatos. Main memory caching of web documents.
Computer Networks and ISDN Systems, 28(7-11):893–906,
1996.

[11] E. P. Markatos. On caching search engine query results.
Computer Communications, 24(2001):137–143, 2001.

[12] D. Plonka. Uw-madison napster traffic measurement, 2000.
http://net.doit.wisc.edu/data/Napster/.

[13] D. Plonka. An analysis of napster and other ip
flow sizes. Network Analysis Times, April 2001.
http://moat.nlanr.net/NATimes/april2001.pdf.

[14] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer sys-
tems and implications for system design. IEEE Internet
Computing Journal, 6(1), 2002.



[15] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings
of Multimedia Computing and Networking (MMCN) 2002,
2002.

[16] K. Sripanidkulchai. The popularity of gnutella queries and
its implications on scaling, 2001.

[17] J. Wang. A survey of web caching schemes for the internet.
ACM Computer Communication Review, 29(5):36–46, 1999.


